sonyps4.ru

CAN-шина не только для автомобилей. Введение в CAN

25.10.2012

или, как более привычно звучит для автомобильной диагностики - CAN шина

* Что такое CAN?

* Взаимосвязь открытых систем (Open System Interconnection (OSI))

* Controller Area Network (CAN)

* Основные принципы CAN

* Как выглядит CAN шина на примере автомобилей произведённых в Японии

Парк автомобилей на наших улицах стремительно омолаживается и вместе с этим приходится осваивать и решать новые задачи связанные с диагностикой и ремонтом. Всё чаще и чаще сталкиваешься в своей повседневной работе с проблемами коммуникации между различными бортовыми системами автомобиля. Если ещё несколько лет назад приезжающие на диагностику автомобили с ошибками по CAN шине (первый символ в классификации диагностического кода неисправности - U ) были редкими гостями, то сейчас это практически повседневная практика. Информация на эту тему в принципе доступна и её достаточно много, даже очень много - что с одной стороны хорошо, а с другой представляет собой определённую сложность в поиске необходимой информации. Этой статьёй хотелось бы в первую очередь дать общее представление о системе CAN () тем, кто только начинает с ней знакомство, и тем, кто желает в этом поглубже разобраться.


Что такое
CAN ?

Controller Area Network - это понятие вошло в обиход после того, как в начале 1980-х годов в Robert Bosch GmbH разработали стандарт промышленной сети, ориентированный прежде всего на объединение в единую сеть различных исполнительных устройств и датчиков. Одно их первых внедрений в автомобильной промышленности было осуществлено на нескольких моделях автомобилей Mercedes-Benz в 1992 году. До этого момента электронное управление исполнительными функциями строилось по системе - один блок управления принимал электронные сигналы с различных датчиков и после их обработки посылал соответствующие команды на исполнительные устройства (такие как бензонасос, форсунки, катушки зажигания и прочие...). Увеличение объёма функций управления автомобилем, передаваемое электронике, привело к появлению таких дополнительных систем как ABS, SRS, AT, Immobilaser и других... Совмещение этих функций в одном ЭБУ привело бы к его громоздкости и чрезмерной сложности, а так же к потере надёжности, когда выход из строя одной системы мог бы привести к потере управляемости всего автомобиля. Поэтому автопроизводители пошли по пути разделения функций управления и выделения всех систем в отдельные блоки. А для того, чтобы увязать все системы в единое целое для решения общих задач управления автомобилем, на помощь пришёл коммуникационный стандарт CAN от Robert Bosch GmbH и это всё шире и шире стало применяться в автомобилестроении. На сегодняшний день практически каждый новый автомобиль оснащён этой системой.

Всё в принципе просто и понятно, но как устроена CAN шина и на чём основывается принцип её работы? Вот один из примеров взаимосвязи электронных блоков управления и устройств завязанных в единую бортовую коммуникационную сеть автомобиля,- рис. 1

Здесь мы рассматриваем только блоки, связанные в проводную сеть, но в автомобилях 21 века находит всё большее применение и беспроводная передача информации. К примеру, система навигации, слежение за местонахождением автомобиля (защита от угона), контроль за давлением в шинах, удалённая диагностика и многие другие. В ближайшем будущем можно ожидать, что слияние воедино в бортовой сети автомобилей внутренних и внешних информационных потоков выведет управление транспортным средством на новый уровень безопасности и комфорта прежде всего в таких направлениях, как отображение информации предупреждения об опасных ситуациях на дорогах и даже активного смягчения последствий возможных столкновений автомобилей, а так же более рационального распределения транспортных потоков.

Немного предыстории - Взаимосвязь открытых систем (Open System Interconnection (OSI)).


Это очевидно, что если два или более микропроцессора взаимосвязаны в одну систему, то должен использоваться стандартный протокол который определяет, каким образом данные должны быть переданы между сетевыми блоками. Наиболее распространенным примером такого протокола является TCP/IP (Transmission Control Protocol / Internet Protocol ), который используется для подключения хостингов в сети Интернет. Предшественником TCP/IP был протокол - Open System Interconnection (OSI ). Этот протокол был разработан в 1982 году Международным бюро по стандартизации International Organization for Standardization (ISO 7498-1:1994 (E )). OSI протокол иногда называют как «семиуровневая» модель, поскольку он состоит из семи независимых элементов, которые определяют требования к взаимосвязи на различных уровнях взаимодействия.


Вот эти семь уровней:

1) Уровень приложений (Application Layer ) - этот уровень определяет какие приложения (программы) имеют доступ к сети. Например - электронная почта, передача файлов, терминалы удалённого доступа и веб-браузеры.

2) Уровень представления данных (Presentation Layer ) - этот уровень определяет такие моменты, как стандарты сжатия данных и их шифрования.

3) Уровень передачи данных (Transport Layer ) - этот уровень обеспечивает стандарты передачи данных между адресатами, осуществляет контроль ошибок и безопасности.

4) Сетевой уровень (Network Layer ) - этот уровень отвечает за вопросы маршрутизации сетевого трафика данных.


5) Уровень каналов связи (Data Link Laye r ) - этот уровень обеспечивает синхронизацию передачи данных и контроль ошибок.

6) Уровень контроля за сеансами связи (Session Layer ) - этот уровень обеспечивает стандартизацию начала и завершения сеансов связи между различными приложениями и сетевыми блоками.

7) Физический уровень (Physical Layer ) - этот уровень определяет стандарты физических характеристик устройств в сети, в том числе типы соединений и разъёмов, электрические характеристики кабелей, уровня напряжения, силы тока и тд.

Но задачи, решаемые протоколом OSI не в полной мере отвечали нуждам автомобильной электроники, и как следствие этого, инженерами Robert Bosch GmbH был разработан, в развитие протокола OSI , специальный протокол CAN , который определял стандарты физического и канального уровней модели OSI в кремнии для осуществления последовательной передачи информации между двумя или более устройствами.

Controller Area Network (CAN)

CAN был разработан Robert Bosch GmbH для автомобильной промышленности в начале 1980-х годов и официально публично выпущен в пользование в 1986 году. Эта разработка CAN от Bosch была принята в качестве стандарта ISO (ISO 11898 ), в 1993 переименована в CAN 2.0A , и расширена в 1995 году, чтобы позволить идентифицировать большее количество сетевых устройств в CAN 2.0B . Как правило, CAN шина соединяет в сеть модули (или узлы), используя два провода, витая пара. Многие компании и не только автомобильные, внедряют CAN протокол в свои разработки для взаимосвязи различных электронно-управляемых устройств. В неофициальной классификации устройства связанные протоколом CAN и имеющие процессоры серии MPC 5xx , называются TouCAN модули; имеющие процессоры серии MPC 55xx называются FlexCAN модули. CAN - последовательный, мульти-отправляющий, многоадресный протокол, это означает, что, когда шина свободна, любой узел, может отправить сообщение (мульти-отправляющее устройство), и все узлы могут получить и отреагировать на сообщение (многоадресно передано). Узел, который инициирует сообщение, называют передатчиком, любой узел не отправляющий сообщение называют получателем. Всем сообщениям присвоены статические приоритеты, передающий узел остаётся передатчиком до тех пор пока шина не станет неактивной или пока в сети не появилось сообщение от другого узла с более высоким приоритетом, процесс который определяет приоритет сообщений и называется - арбитраж. Сообщение по CAN шине может содержать до 8 байтов данных. Идентификатор сообщения описывает контент данных и используется получающими узлами для определения места назначения в сети (другими словами - адресата, узел которому это сообщение адресовано). В коротких сетях (≤ 40 м), скорость передачи сообщений может достигать до 1 Мбит/с. Более длинные сетевые расстояния уменьшают доступную скорость передачи, например до 125 Кбит/с в сети длиной до 500м. Высокоскоростной CAN ( High speed” CAN ) сетью, считается сеть со скоростью передачи данных более 500 Кбит/с.

Основные принципы CAN


Детали спецификации CAN протокола полностью описаны в Robert Bosch GmbH , “ CAN Specification 2.0,” 1991 . Ознакомиться с документом в формате PDF можно последующему адресу http://esd.cs.ucr.edu/webres/can20.pdf . Далее я дам максимально возможно краткое описание того как данные передаются по CAN, как структурированы сообщения CAN и как обрабатываются ошибки передачи сообщений.

Есть четыре типа сообщений CAN , или фреймы (frames ): фрейм данных (Data Frame ), удаленный фрейм (Remote Frame ), ошибочный фрейм (Error Frame ) и фрейм перегрузки (Overload Frame ).

Data Frame - стандартное сообщение CAN, широковещательно передаваемые данные от передатчика на другие узлы сети.

Remote Frame -широковещательно передаваемое передатчиком сообщение, на запрос данных от конкретного узла сети.

Error Frame -может быть передан любым узлом, который обнаруживает ошибку в сети.

Overload Frame -используются как запрос на предоставление дополнительной паузы между получаемыми данными ( Data Frame ) или запросами на получение данных ( Remote Frame ).

Ниже проиллюстрированы различия между Data Frames для стандартов CAN 2.0A и CAN 2.0B,- рис. 2

Различие между форматами CAN 2.0 А и CAN 2.0B заключаются в том что фрейм данных для CAN 2.0B поддерживает как стандартный идентификатор фрейма данных - 11 бит, так и расширенный идентификатор фрейма данных - о 29 бит. Фреймы стандартного и расширенного формата могут без проблем передаваться по одной на той же шине, и даже иметь в цифровой форме эквивалентный идентификатор.

В этом случае у стандартного фрейма будет более высокий приоритет,- рис. 3


Описание фрейма сообщения стандарта CAN 2.0А


Начало сообщения (Start of Frame (SOF)

Идентификатор (Identifier ) - 11 бит, уникальный идентификатор, указывает приоритет.

Удаленный запрос на передачу () - 1 бит, доминантный в сообщении и рецессивный в запросе на передачу сообщения.

Резерв (Reserved ) - 2 бита, должны быть доминантными.

Длина кода данных (Data Length Code (DLC)

Поле передаваемых данных (Data Field DLC .

Cyclic Redundancy Check (CRC) ) - 15 бит.

Разделитель CRC

Подтверждение (Acknowledge (ACK)

Разделитель ACK - 1 бит, должен быть рецессивным.

Завершение сообщения (End of Frame (EOF) ) - 7 бит, должны быть рецессивными,- рис. 4


Описание фрейма сообщения стандарта CAN 2.0В

Начало сообщения ( Start of Frame (SOF) ) - 1 бит, должен быть доминантным.

Идентификатор стандартного и расширенного форматов ( Identifier ) - 11 бит, уникальный идентификатор, соответствует базовому ID в расширенном формате.

Идентификатор расширенного формата (Identifier – Extended Format ) - 29 бит, состоит из 11 бит базового ID и 18 бит расширенного ID .

Удаленный запрос на передачу (Remote Transmission Request (RTR) ) стандартный и расширенный форматы - 1 бит, доминантный в сообщении и рецессивный в запросе на передачу сообщения. В стандартном формате 11 бит идентификатора следуют за битом RTR .

Замещение удалённого запроса (Substitute Remote Request ( SRR ) ). Для расширенного формата - 1 бит, должен быть рецессивный. SRR передаются в расширенных форматах сообщений на позиции бита RTR в стандартном сообщении. В арбитраже между стандартными и расширенными сообщениями, рецессивные SRR обеспечивает приоритет стандартным сообщениям.

Поле IDE – для стандартного и расширенного форматов - 1 бит, должен быть рецессивным для расширенного формата и доминантным для стандартного.

Резерв (Reserved r0 ) для стандартного формата - 1 бит, должен быть доминантным.

Резерв (Reserved r1, r0 ) для расширенного формата - 2 бита, должны быть рецессивными.

Длина кода данных ( Data Length Code (DLC ) ) - 4 бита, количество байтов данных (0-8).

Поле передаваемых данных ( Data Field ) - от 0 до 8 байт, размер определен в поле DLC .

Контрольный циклический избыточный код ( Cyclic Redundancy Check (CRC ) ) - 15 бит.

Разделитель CRC - 1 бит, должен быть рецессивный.

Подтверждение (Acknowledge (ACK ) ) - 1 бит, передатчик отправляет рецессивный; получатель подтверждает доминантным.

Разделитель ACK - 1 бит, должен быть рецессивным.

Завершение сообщения ( End of Frame (EOF ) ) - 7 бит, должны быть рецессивными.

Фрейм данных CAN

Фрейм данных CAN состоит из семи полей: Начало фрейма ( SOF ), арбитраж, управление, данные, цикличные, проверка по избыточности (CRC) , подтверждение (ACK ) и конец фрейма (EOF ). Биты сообщения CAN обозначены как "доминирующие" (0) или "рецессивные" (1). Поле SOF состоит из одного доминирующего бита. Все сетевые узлы синхронно ожидают команды разрешения на передачу сообщений и начинают передавать одновременно. Арбитражная схема определяет, какой из узлов, пытающихся передавать сообщения имеет главный приоритет и фактически будет управлять шиной.


А рбитраж (Arbitration)

Арбитражное поле сообщения CAN состоит из 11-или 29-разрядного идентификатора и бита удаленной передачи ( RTR ). Арбитражную схему CAN называют “ носителем контроля с множественным доступом и обнаружением коллизий ” или CSMA/CD , которая гарантирует, что самое важное сообщение с наивысшим приоритетом будет передано по всей сети в первую очередь . Приоритет сообщения определен численным значением идентификатора в арбитражном поле, поле с самым низким численным значением имеет самый высокий приоритет. Неразрушающий, интеллектуальный арбитраж разрешает конфликты среди конкурирующих передатчиков. Это означает, что шина может считаться действующей как логический элемент И ( AND gate ). Если какой-либо узел пишет по сети доминантный признак (0), то каждый узел читает доминирующий бит независимо от его назначения, заданного передающим узлом. Каждый передающий узел всегда читает ответ на каждый переданный бит. Если узел передает рецессивный бит запроса на отправку сообщения и получает доминирующий бит для прочтения сообщения, он сразу же прекращает передавать.

Ниже проиллюстрирован приоритет сетевого арбитража где третий узел имеет высший приоритет и первый низший,- рис. 5

Бит RTR включён для того чтобы различать сообщения для передачи и удаленные запросы на приём сообщений. В стандартных сообщениях для передачи ( Data Frame ) бит RTR должен быть доминантным, а в удаленных запросах на приём сообщений ( Remote Frame ) должен быть быть рецессивным.

Контрольное поле и поле данных в сообщении (Control and Data Fields)

Поле управляющее длиной кода данных ( DLC ) состоит из 6 бит (из которых используются только 4 младших бита), они показывают количество данных в сообщении. Поскольку только до 8 байт данных может быть отправлено в одном сообщение, поле DLC может принимать значения в диапазоне от 000000 до 000111. Данные которые должны быть переданы содержатся только в поле данных. В первую очередь передается наиболее значимый байт ( M ost significant byte (MSB) ) из байтов данных.

Обработка ошибок (Error Handling)

В протоколе CAN реализовано пять уровней обнаружения ошибок. На уровне сообщений, выполняется циклическая проверка избыточности ( Cyclic Redundancy Check (CRC) ), проверки сообщения и обязательное подтверждение проверок ( Acknowledge (ACK) ). Бит проверки уровней состоит из монитора и наполнения.

Циклические ошибки избыточности обнаруживаются, используя код CRC размером 15 битов, вычисленный передатчиком из контента сообщения. Каждый получатель, принимающий сообщение, повторно вычисляет код CRC и сравнивает его с переданным значением. Несоответствие между этими двумя вычислениями заставляет установить флаг (flag ) ошибки. Проверяемые сообщения, в которых будет установлен флаг ошибки, это обнаружение получателем недопустимого бита в разделителе CRC , разделителе ACK , в завершении сообщения EOF или в 3-х битном разделяющим сообщения пространстве. В конечном итоге каждый принимающий узел записывает доминантный бит в ячейку разделителя ACK , которая затем читается отправившим это сообщение узлом. И если приём сообщения получателем не подтверждён (возможно потому что получающий узел перестал работать) то устанавливается флаг ошибки подтверждения ( ACK ).

На уровне битов мы уже отметили, что каждый переданный бит считывается снова передатчиком этого сообщения при контроле подтверждения о получении сообщения, присланного получателем. Если контролируемое значение отличается от отправленного, значит на уровне битов обнаружена ошибка. Дополнительно, ошибки на уровне битов обнаруживаются при помощи «вставок»: После пяти последовательных идентичных битов, которые передаются в сообщении следует «вставка», бит противоположной полярности вставляется передатчиком в поток передаваемых битов (биты «вставки» вставляются в сообщение от поля SOF до поля CRC ). Получатели автоматически проверяют сообщение на наличие «вставок». Если любой из принимающих узлов сети обнаруживает в полученном сообщении шесть последовательных идентичных битов, то фиксируется ошибка (отсутствия «вставки»). В дополнение для обнаружения ошибок, «вставки» гарантируют, что есть достаточно не нулевых окончаний в потоке битов ( non-return to zero (NRZ) ), чтобы поддержать синхронизацию.

Сообщение об ошибке (The CAN Error Frame)

Если передающий или принимающий узел обнаруживает ошибку, он немедленно прерывает приём или передачу текущего сообщения. Сообщение об ошибке называемое «флаг» ошибки, составляется из шести доминантных битов и разделителя сообщения об ошибке состоящего из восьми рецессивных битов. Так как эта строка битов нарушает правило «вставок», все другие узлы также передают сообщение об ошибке. После критичного количества обнаруженных ошибок, узел в конце концов само-отключается. Надежность, особенно в производстве и автомобильной электронике, где применяется технология CAN, требует, чтобы сеть могла отделять случайные ошибки (из-за скачков напряжения, шумов или других временных причин) от постоянных, являющихся причиной неисправности узла из-за дефектов в оборудовании. Следовательно, узлы хранят и отслеживают число обнаруженных ошибок. Узел может быть в одном из трех режимов в зависимости от количества зафиксированных ошибок:

Если количество зафиксированных ошибок в каждом буфере передачи или приёма соответствующего узла, больше чем нуль и меньше чем 128, узел считается «активным с ошибкой» ( error active ), указывая на то, что несмотря что узел остается полностью функциональным, по крайней мере одна ошибка была обнаружена.

Если количество зафиксированных ошибок между 128 и 255, то узел переходит в «пассивный с ошибками» (“error passive” ) режим. В «пассивном с ошибками» режиме узел будет передавать на более медленном уровне, отправляя 8 рецессивных битов прежде чем снова отправить сообщение, распознав что шина свободна.

Если количество зафиксированных ошибок более 255, то узел переходит в режим «отключен от сети» ( bus off ), отключив себя самостоятельно.

Ошибка при получении добавляет в общее количество учтённых ошибок 1, ошибка при передаче добавляет в общее количество учтённых ошибок 8. Последующие безошибочные сообщения постепенно уменьшают количество учтённых ошибок на 1, за каждое безошибочное сообщение. Если общее количество учтённых ошибок возвращается к нулю, узел возвращается в нормальный режим функционирования. Узел в находящийся режиме bus off может перейти в режим error active после 128 входов в сеть из 11 последовательных рецессивных битов, которые были проконтролированы. Сообщение считается безошибочным, если передающий узел не нашёл в нём ошибок вплоть до поля EOF . Повреждённые сообщения отсылаются повторно сразу как только шина становится свободной.

Запрос данных от конкретного узла сети (The CAN Remote Frame)

Узел, которому необходимы данные от другого узла сети, может запросить передачу таких данных, отправив соответствующий запрос на получение данных ( Remote Frame ). Например, микропроцессору управления центральным замком на вашем автомобиле необходимо знать положение селектора коробки передач от ЭБУ трансмиссии (является ли он в положении «паркинг»). Структура запроса на получение данных аналогична структуре стандартного сообщения только без поля данных ( data field ) и с рецессивным RTR битом.

Запрос на предоставление дополнительной паузы между получаемыми данными и свободное пространство между сообщениями (Overload Frames and Interframe Space)

Если какой-либо узел сети будет получать сообщения быстрее, чем он может их обработать, то будет сгенерирован запрос на предоставление дополнительной паузы между получаемыми данными ( Overload Frames )чтобы обеспечить дополнительное время между принимаемыми данными или запросами на получение сообщений ( Remote Frame ). Подобно сообщению об ошибке, Overload Frame имеет два поля с битами: flag перегрузки состоящий из шести доминирующих битов и разделитель перегрузки, состоящий из восьми рецессивных битов. В отличие от сообщений об ошибке, суммарный подсчёт Overload Frames не ведётся.

Пространство между сообщениями состоит из трех рецессивных битов так же, как и время простоя шины между сообщениями или удаленными запросами на передачу. Во время перерыва никакому узлу не разрешают инициировать передачу (если доминирующий бит будет обнаружен во время Перерыва, то Overload Frame будет сгенерирован). Время простоя шины длится, пока у узла нет чего-то для передачи, а когда начинается передача, то в этот момент появление доминирующего бита на шине сигнализирует о начале передачи сообщения

CAN обеспечивает устойчивое, простое и гибкое сетевое решение для производственных, автомобильных и многих других приложений. Главный недостаток протокола CAN - что задержка сообщения не является определённой (из-за существования Error Frame s , Overload Frame s и повторных передач), и увеличения задержки ведёт к увеличению сетевого трафика. В целом использование шины не должно превышать 30% от максимальной мощности шины и гарантировать, что низкоприоритетные сообщения не испытывают недопустимую задержку. Использование шины определено как деление двух величин - общее количество использованных для передачи битов поделённое на общее максимально доступное количество для передачи битов , и вычисляется следующим образом:

Шаг 1 - Выбирается единица времени ≥ самого медленное зафиксированного периодического сообщение в сети (обычно 1 секунда).

Шаг 2 - Определяются все периодические сообщения.

Шаг 3 - К каждому из этих сообщений приблизительно одинакового размера, добавляются 47 служебных бит (размер служебных полей данных - SOF + Arbitration + RTR + Control + CRC + Acknowledgment + EOF +

Interframe Space = 1 + 11 + 1 + 6 + 16 + 2 + 7 + 3 = 47 bits).

Шаг 4 - Рассчитывается количество бит используемых в сообщениях путем умножения размера сообщения в битах на количество передач выполняемых в единицу времени.

Шаг 5 - Суммирование всех битов используемых в переданных сообщениях для оценки общего объёма сетевого трафика. Умножение этой величины на страховочный коэффициент 1.1 для получения наихудшего прогноза сетевого трафика.

Шаг 6 - В завершении, поделите общее количество использованных для передачи битов на общее максимально доступное количество для передачи битов (например, 125 Кбит/с или 500 Кбит/с умножаются на единицу времени) для получения предполагаемого процента загрузки шины,- рис. 6


Протоколы синхронизированные по времени (Time-triggered Protocols)


Для контроля над сетью в реальном времени было бы желательно реализовать такой протокол связи, который гарантирует, что для сообщений выбираются крайние временные параметры независимо от нагрузки на шину. Пример такого протокола, который контролирует временной уровень связи CAN данных, это “ time-triggered CAN ,” или TTCAN (ISO 11898-4 ). TTCAN сообщения имеют два специальных типа, называемые «окна времени» ( time windows ): привилегированные окна времени ( exclusive time windows ), и арбитражные окна времени ( arbitrating time windows ). Еxclusive time windows прикреплены к специальным сообщениям, которые передаются периодически. Таким образом, Еxclusive time windows не конкурируют за доступ к шине. Аrbitrating time windows используются для сообщений не имеющих строгих ограничений по времени.

Аrbitrating time windows , как нормальные сообщения CAN , конкурируют за доступ к шине на основе приоритета через арбитраж. Тime-triggered CAN протокол, требует наличия в сети "главного узла" ( master node ), который периодически широковещательно передает сигнал времени сети (называемый глобальным временем ( global time )) в специальном информационном сообщении. Для повышения отказоустойчивости в сети должны быть несколько потенциальных главных узлов. Если главный узел перестал работать (обнаружено отсутствие специального информационного сообщения), другие потенциальные главные узлы конкурируют за статус «главного узла» при помощи арбитража и новым «главным узлом» становится узел с самым высоким приоритетом. После этого новый главный узел начинает широковещательно передавать специальные информационные сообщения - global time . Тime-triggered CAN протокол не ретранслирует повреждённые сообщения, и при этом это не вызывает Error Frames.


У протокола TTCAN есть конкурирующий протокол FlexRay , разработанный консорциумом автомобильных производителей и поставщиков. Коммуникационное сообщение (фрейм) FlexRay состоит из периодических синициированных "статических" и "динамических" частей. Статический сегмент составлен из одинаковой длины временных интервалов, соответствующих соединенным в сеть узлам. Каждый узел передает свои сообщения синхронно в его зарезервированном слоте. Статический сегмент также передает "синхронизирующий" кадр, чтобы обеспечить глобальную переменную ( timebase ) для сети. В отличие от CAN , нет никакого арбитража для шины. Динамический сегмент - по существу механизм "опроса" где каждому узлу дают возможность поместить инициированное событие или асинхронное сообщение в шину в порядке приоритетов, используя механизм синхронизации «миниразделения на слоты». Для повышения отказоустойчивости, узлы сети использующей протокол FlexRay , могут быть связаны двумя шинами или каналами одновременно.

Ну вот, в принципе, вся основная информация о протоколе CAN , а теперь немного о том, как выглядит CAN шина на примере автомобилей произведённых в Японии . Сразу хочу отметить, что без надлежащего диагностического оборудования проводить диагностику и ремонт неисправностей CAN шины можно в очень ограниченном диапазоне. Всё сведётся к проверке физической целостности проводов, проверки состояния соединительных разъёмов, проверки сопротивления проводки и Terminal resistor , проверки соответствующего уровня напряжения на CAN low и CAN high линиях. Применение в диагностике дилерского оборудования тоже лишь облегчит проверку и сузит круг поиска неисправности, с очень большой неохотой автопроизводители допускают контакт с программным обеспечением, своей интеллектуальной собственностью. В случае проблем на программном уровне возможно только перепрограммирование или замена соответствующего ЭБУ.

Пример CAN шины автомобиля Nissan 2007г.в. - Рис. 7

  • DIY или Сделай сам ,
  • Электроника для начинающих
  • Сегодня я хочу познакомить вас с интересной микроконтроллерной платформой CANNY . Это обзорная статья в которой вы узнаете о технологии, а в последующих статьях я расскажу вам о работе с сообщениями CAN, интеграции CANNY c Arduino Mega Server и о тех возможностях, которые предоставляет эта связка.

    Почему CANNY? От названия шины CAN, которая широко используется на транспорте и, в частности, во всех современных автомобилях в качестве бортовой сети. Итак, что же можно сделать, имея специализированный контроллер, подключённый к CAN шине вашего автомобиля?

    Шина CAN

    Образно говоря, шина CAN это нервная система вашего автомобиля. По ней передаётся вся информация о состоянии блоков и систем, а также управляющие команды, которые во многом определяют поведение автомобиля. Зажигание фар, открывание и закрывание дверей, управление проигрыванием музыки в салоне машины, срабатывание сигнализации и т. д. - всё это работает и управляется по этой шине.

    Физически, шина CAN представляет собой два перевитых провода и очень проста в монтаже и подключении. Несмотря на свою простоту, она, благодаря своей дифференциальной природе, хорошо защищена от различных наводок и помех. Высокая надежность и большая допустимая длина сети, до 1000 метров, помогла CAN завоевать широкую популярность у производителей различного, не только автомобильного оборудования.

    Контроллеры CANNY

    Это целое семейство специализированных контроллеров, имеющих встроенную «родную» поддержку работы с шиной CAN. Это касается как «железной» части, так и поддержки на уровне «софта».

    Флагманом линейки является контроллер CANNY 7, наиболее мощный и имеющий максимум возможностей. Большое количество памяти, мощные выходы, позволяющие напрямую управлять реле автомобиля, интеллектуальная система защиты от коротких замыканий, защита от бросков тока и напряжения в бортовой сети автомобиля - всё это делает этот контроллер отличным решением для воплощения любых ваших идей и проектов.

    Кроме CANNY 7 в линейке контроллеров присутствует ещё несколько моделей, мы будем проводить свои эксперименты с более простой встраиваемой моделью CANNY 5 Nano. Она также поддерживает работу с CAN шиной, но при этом похожа на уже знакомую нам Arduino Nano.

    Визуальное программирование

    Развитая поддержка шины CAN это не единственная особенность этих контроллеров, кроме этого CANNY имеют свою собственную среду программирования, CannyLab, но не «обычную», а визуальную, где весь процесс написания программ сводится к манипулированию готовыми структурными блоками, заданию их параметров и соединению входов и выходов этих блоков в определённой последовательности, в соответствии с алгоритмом решаемой задачи.

    Ни одной строчки кода!

    Хорошо это или плохо? На мой взгляд, это дело привычки. Мне, как человеку привыкшему к «традиционному» программированию, было непривычно манипулировать блоками, вместо написания строк кода. С другой стороны, существует множество приверженцев именно такого подхода к составлению алгоритмов и считается, что для инженеров и «не программистов» это наиболее простой и доступный метод программирования микроконтроллеров.

    Мне, как минимум, было «прикольно» составлять программы таким образом и через некоторое время мне это стало даже нравиться. Возможно, что если продолжить этим заниматься, то через некоторое время уже написание кода покажется неудобным.

    CannyLab является бесплатной средой разработки и вы можете свободно скачать её с сайта разработчиков, она также не требует специальной процедуры инсталляции - достаточно распаковать файл с архивом - и вы можете начинать работу.

    Подключение

    Подключение CANNY 5 Nano к компьютеру мало чем отличается от подключения контроллеров Arduino. При наличии в системе драйвера Silicon Labs CP210x, либо после его установки из скаченного дистрибутива CannyLab, Windows создаёт виртуальный COM порт и CANNY готов к работе. В моём случае понадобилось ещё перезагрузить компьютер, но возможно это особенность моей системы.

    Практические примеры

    Давайте на простых примерах разберём, как в CannyLab выполнять действия, привычные нам в Arduino IDE. Начнём с традиционного мигания светодиодом.

    В контроллере CANNY 5 на выводе С4 (Channel 4) присутствует тестовый светодиод (аналог светодиода, находящегося на 13 выводе в Arduino). И его тоже можно использовать для индикации и экспериментов, чем мы и воспользуемся.

    Что же нужно, чтобы помигать светодиодом в контроллере CANNY? Нужно сделать всего две вещи - сконфигурировать пин четвертого канала как выход и подать на этот выход сигнал с ШИМ генератора. Все эти действия мы уже не раз проделывали в Arduino IDE, посмотрим как это выглядит в CannyLab.

    Итак, конфигурируем пин четвертого канала как выход

    Настраиваем генератор ШИМ. Задаём период 500 миллисекунд, заполнение - 250 миллисекунд (то есть 50 %) и 1 (true) на входе генератора «Старт» и… всё! Больше ничего делать не нужно - программа готова, осталось только залить её в контроллер.

    Режим симуляции

    Тут нужно сказать пару слов о процессе симуляции на компьютере работы контроллера и заливке разработанной программы в память «железного» контроллера.

    Среда разработки CannyLab позволяет запускать и отлаживать программу, не записывая её в память контроллера. В режиме симуляции вы можете видеть результат работы программы прямо в реальном времени и даже вмешиваться в её работу.

    Заливка в контроллер

    Для работы контроллеров CANNY, перед заливкой программы (в терминологии разработчиков «диаграммы») нужно сначала залить операционную систему «Устройство/Системное ПО/Записать». Это нужно сделать только один раз, для этого нужно выбрать соответствующий вашему контроллеру файл с расширением .ccx .

    После того, как программа написана и отлажена, её можно загрузить в ваш контроллер. Это делается просто - в меню выбираете пункт «Устройство/Диаграмма/Записать» и через несколько секунд программа оказывается записанной в контроллер.

    Аналоговые входы

    Для того, чтобы лучше понять принцип программирования контроллеров CANNY в среде разработке CannyLab, давайте ещё разберём пример работы с аналоговым входом в этой системе.

    Мы будем отслеживать уровень напряжения на 10 пине контроллера и если он находится в диапазоне 2,5 В ± 20%, будем зажигать встроенный в плату светодиод.

    Как и в предыдущем примере, конфигурируем 4-й пин как выход для того, чтобы иметь возможность управлять работой светодиода.

    Включаем АЦП на 10-м канале.

    Блок «Логическое И» довершает работу и со своего выхода управляет работой светодиода на плате.

    Вот и всё. То, что мы привычно делали на Arduino, мы легко сделали в CannyLab. Осталось только освоиться в этой среде программирования и вы сможете легко и непринуждённо создавать свои проекты на этой платформе.

    Эти простые примеры составления программ даны для того, чтобы вы могли понять принцип визуального программирования микроконтроллеров CANNY. В дальнейшей работе вам поможет отличная справочная документация и поддержка разработчиков на сайте и форуме системы.

    Полевая шина CAN (Controller Area Network) характеризуется высокими скоростью передачи данных и помехоустойчивостью, а также способностью обнаруживать любые возникающие ошибки. Не удивительно, что благодаря этому CAN сегодня широко используется в таких областях, как автомобильный и железнодорожный транспорт, промышленная автоматика, авиация, системы доступа и контроля. По данным ассоциации CiA (CAN in Automation, www.can-cia.de), в настоящее время в эксплуатации находится около 300 млн CAN-узлов по всему миру. В Германии CAN-шина занимает первое место по популярности среди остальных полевых шин. В данной статье приводится общее описание и технические характеристики CAN-шины и описывается логика ее работы. Кроме того, приводится описание встроенных модулей CAN, автономных контроллеров на примере микроконтроллеров (МК) Infineon, трансиверов и дросселей. Рассматриваются средства разработки устройств с CAN-шиной.

    Характеристики протокола CAN Преимущества CAN

    Общая тенденция в области автоматизации состоит в замене традиционной централизованной системы управления на распределенное управление путем размещения интеллектуальных датчиков и исполнительных механизмов рядом с управляемым процессом. Это вызвано ростом числа проводов связи, увеличением количества соединений, сложностью диагностики ошибок и проблемами с надежностью. Связь между узлами такой системы осуществляется с помощью полевой шины. CAN - это система связи для многоконтроллерных систем. Рассмотрим более подробно преимущества CAN и причины, по которым CAN приобретает все большее распространение.

    Испытанный стандарт. Протокол CAN активно используется уже более 20 лет, что очень важно для таких консервативных областей как железнодорожный транспорт или судостроение. CAN был разработан в 1980 г. фирмой Robert Bosch для автомобильной промышленности. CAN-интерфейс регламентирован международными стандартами ISO 11898 для высокоскоростных и ISO 11519-1 для низкоскоростных приложений. Низкая стоимость определяется хорошим соотношением цена/производительность, также широкой доступностью CAN-контроллеров на рынке. Надежность определяется линейной структурой шины и равноправностью ее узлов, так называемой мультимастерностью (Multi Master Bus), при которой каждый узел CAN может получить доступ к шине. Любое сообщение может быть послано одному или нескольким узлам. Все узлы одновременно считывают с шины одну и ту же информацию, и каждый из них решает, принять данное сообщение или игнорировать его. Одновременный прием очень важен для синхронизации в системах управления. Отказавшие узлы отключаются от обмена по шине.

    Высокая помехоустойчивость достигается благодаря подавлению синфазных помех дифференциальным приемопередатчиком, работе встроенных механизмов обнаружения ошибок (одна необнаруженная ошибка за 1000 лет при ежедневной 8-часовой работе сети на скорости 500 Кбит/с), повтору ошибочных сообщений, отключению неисправных узлов от обмена по шине и устойчивости к электромагнитным помехам.

    Гибкость достигается за счет простого подключения к шине и отключения от шины CAN-узлов, причем общее число узлов не лимитировано протоколом нижнего уровня. Адресная информация содержится в сообщении и совмещена с его приоритетом, по которому осуществляется арбитраж. В процессе работы возможно изменение приоритета передаваемого сообщения. Следует также отметить возможность программирования частоты и фазы передаваемого сигнала и арбитраж, не разрушающий структуру сообщений при конфликтах. На физическом уровне есть возможность выбора разнотипных линий передачи данных: от дешевой витой пары до оптоволоконной линии связи.

    Работа в реальном времени становится возможной благодаря механизмам сетевого взаимодействия (мультимастерность, широковещание, побитовый арбитраж) в сочетании с высокой скоростью передачи данных (до 1 Мбит/с), быстрой реакцией на запрос передачи и изменяемой длиной сообщения от 0 до 8 байт.

    Приложения CAN

    CAN является идеальным решением для любого приложения, где микроконтроллеры обмениваются сообщениями друг с другом и с удаленными периферийными устройствами. Изначально CAN использовался в автомобилях для обеспечения критичного по времени управления и обмена информацией между двигателем и коробкой передач при гарантированном времени ожидания сообщения и допуске каждого из участников сети к работе с текущими данными. Наряду с достаточно дорогими высокоскоростными решениями существуют и экономичные решения для подключения к сети инерционных устройств, которые работают в шкале времени сотен микросекунд (система управления дверьми, подъемник окна, управление зеркалом). При этом мощные жгуты электрических проводов заменяются двухпроводной CAN-сетью, узлами которой являются, в том числе, тормозные огни и указатели поворота.

    Широкое применение CAN нашел в промышленной автоматике, где имеется большое число устройств управления, датчиков, механизмов, электроприводов и других объектов, которые связаны единым технологическим циклом (системы отопления и кондиционирования, насосы, конвейеры, лифты, эскалаторы, транспортеры и т. д.). Важной особенностью таких систем является возможность диагностики и управления объектами, расположенными на большой территории, по адаптивным алгоритмам. В результате достигается существенное уменьшение потребляемой мощности, шума, износа оборудования. Подобная картина наблюдается и в железнодорожных бортовых системах, где решающую роль играет обмен данными между подсистемами при наборе скорости, торможении, управлении дверьми и диагностике.

    Физический уровень

    Физический уровень CAN-шины представляет собой соединение «монтажное И» между всеми устройствами, подключенными к ней. Дифференциальные сигнальные линии называются CAN_H и CAN_L и в статическом состоянии находятся под потенциалом 2,5 В. Лог. 1 (рецессивный бит) обозначает состояние шины, при котором уровень на линии CAN_H выше, чем уровень CAN_L. При лог. 0 (доминантный бит) уровень на линии CAN_H ниже, чем уровень CAN_L. Принято следующее соглашение о состоянии шины: пассивное состояние шины соответствует уровню лог. 1, а активное - уровню лог. 0. Когда сообщения не передаются по шине, она находится в пассивном состоянии. Передача сообщения всегда начинается с доминантного бита. Логика работы шины соответствует «проводному И»: доминантный бит «0» подавляет рецессивный бит «1» (рис. 1).

    Рис. 1. Логика работы CAN шины

    При физической реализации конкретного проекта с CAN необходимо определить свойства шины и ее узлов: где располагаются обрабатывающие устройства, какими свойствами они обладают, какие датчики и исполнительные механизмы присутствуют в системе, являются они интеллектуальными или нет, что можно сказать об их физическом расположении. В зависимости от условий эксплуатации могут использоваться однопроводная линия (в пределах печатной платы), двухпроводная линия, витая пара или волоконно-оптическая линия. При дифференциальном методе формирования сигналов двухпроводная линия позволяет значительно повысить помехоустойчивость. При использовании дифференциальных напряжений CAN-сеть продолжает функционировать в чрезвычайно шумной среде или при обрыве одной из сигнальных линий. Даже при простой витой паре дифференциальные входы CAN эффективно нейтрализуют шум.

    Максимальная скорость передачи данных составляет 1 Мбит/с при длине шины 40 м и около 40 Кбит/с при длине шины 1000 м.

    Арбитраж узлов CAN-шины

    CAN имеет много уникальных свойств, отличающих его от других шин. В протоколе CAN осуществляется посылка сообщений по общей CAN-шине, при этом отсутствуют адреса отправителя и получателя сообщения. Каждый узел постоянно «просматривает» шину и осуществляет локальную фильтрацию при приеме, используя битовые маски, и решает, какие сообщения извлекать из шины.

    В результате узел принимает и обрабатывает только те сообщения, которые предназначены именно для него.

    Каждое сообщение имеет свой приоритет, значение которого содержится в идентификаторе сообщения. Кроме того, идентификаторы используются для обозначения типа сообщения. Сообщению с младшим номером идентификатора соответствует высший приоритет; наивысшим приоритетом обладает сообщение с идентификатором, состоящим полностью из нулей. Передача сообщения начинается с отправки на шину идентификатора. Если доступ к шине требуют несколько сообщений, то сначала будет передано сообщение с наиболее высоким приоритетом, то есть с меньшим значением идентификатора, независимо от других сообщений и текущего состояния шины. Каждый узел перед передачей сообщения проверяет, работает ли узел с более высоким приоритетом. Если да, то он возвращается в состояние приемника и пытается передать сообщение в другое время. Это свойство имеет особое значение при использовании в системах управления реального времени, поскольку значение приоритета жестко определяет время ожидания.

    Если передача узла А приостанавливается узлом B, посылающим сообщение с более высоким приоритетом, то, как только шина освободится, будет сделана другая попытка передачи сообщения от узла A. Этот принцип получил название CSMA/CA: Carrier Sense Multiple Access/Collision Avoidance (общий доступ с опросом/предотвращение конфликтов). Такой режим в отличие от Ethernet не позволяет конфликтующим узлам в шине выяснять отношения, а сразу выявляет победителя и сокращает время обмена.

    Итак, благодаря арбитражу шины сообщение с высшим приоритетом передается первым, обеспечивая функционирование системы в реальном масштабе времени и быструю передачу информации. Распределение приоритетов между различными типами сообщений задается разработчиком при проектировании сети.

    Формат сообщений

    Если не учитывать процедуру повтора сообщения, принятого с ошибкой, существует два вида связи между узлами: один узел передает информацию, а другой получает, или узел A запрашивает узел B о данных и получает ответ.

    Рис. 2. Кадр данных (Data Frame)

    Для передачи данных служит кадр данных - Data Frame (рис. 2), который содержит:

    • идентификатор, указывающий на тип сообщения («скорость_двигателя», «температура_масла») и на приоритет доступа к шине. Поле идентификатора содержит различное количество бит в зависимости от разновидности протокола: в стандартном формате CAN V2.0A предусмотрен 11-разрядный идентификатор, а в расширенном CAN V2.0B - 29-разрядный;
    • поле данных, содержащее соответствую-щее сообщение («скорость_двигателя»= 6000 об/мин, «температура_масла»=110 °C) длиной до восьми байт;
    • два байта контрольной суммы - Cyclic Redundancy Check (CRC) для выявления и коррекции ошибок передачи.

    Для запроса информации узел CAN использует кадр запроса данных Remote Frame (рис. 3), который содержит:

    • идентификатор, определяющий тип запрашиваемой информации («скорость_ двигателя», «температура_масла») и приоритет сообщения;
    • два байта контрольной суммы CRC .

    Рис. 3. Кадр запроса данных Remote Frame

    В этом случае за идентификатором не следуют данные и код длины данных не имеет прямого отношения к количеству байт данных. Узел, которому предложено передать информацию (датчик температуры масла), передает кадр данных, содержащий требуемую информацию. Таким образом, если узел А направляет узлу В кадр запроса с идентификатором «температура_масла», то узел В опрашивает датчик температуры и направляет узлу А кадр данных, содержащий идентификатор «температура_масла» и требуемую информацию.

    Дополнительная информация, содержащаяся в кадре, позволяет определить формат и синхронизацию протокола передачи сообщения и тип посылки:

    • какое сообщение послано - запрос о данных или собственно данные определяют бит удаленного запроса передачи (RTR для 11-разрядного идентификатора и SRR для 29-разрядного);
    • код длины данных, сообщающий, сколько байтов данных содержит сообщение; все узлы принимают кадр данных, но те из них, которым эта информация не нужна, ее не сохраняют;
    • для обеспечения синхронизации и контроля кадр содержит поля начала кадра Start of Frame, конца кадра End of Frame и подтверждения Acknowledgement Field;
    • вход в режим синхронизации на шине осуществляется первым битом поля Start of Frame, далее синхронизация поддерживается фронтом при смене уровня посылаемых битов;
    • используется механизм битстаффинга - вставка дополнительного бита при следующих подряд пяти нулях или единицах.

    Обнаружение ошибок

    Сигнализация об ошибках происходит путем передачи кадра ошибки Error Frame. Он инициируется любым узлом, обнаружившим ошибку. CAN-контроллеры используют метод статистической обработки ошибок. Каждый узел содержит счетчики ошибок при передаче и приеме Transmit Error Counter и Receive Error Counter. Если передатчик или приемник обнаруживают ошибку, значение соответствующего счетчика увеличивается. Когда значение счетчика превышает некоторый предел, текущая передача прерывается. Узел выдает сигнал об ошибке в виде Error Frame, где выставляет активный доминантный флаг ошибки длиной 6 бит. После этого узел, передача которого была прервана, повторяет сообщение. Ненадежным или частично поврежденным узлам разрешено посылать лишь пассивный рецессивный флаг ошибки.

    В CAN существует несколько разновидностей ошибок. Из них три типа на уровне сообщений:

    • CRC Error - ошибка контрольной суммы (при несовпадении принятой в поле CRC и вычисленной контрольных сумм).
    • Form Error - ошибка формата кадра при несоответствии принятого сообщения формату CAN.
    • Acknowledgement Error - ошибка подтверждения приема сообщения, если ни один из узлов не подтвердил правильного получения сообщения.

    Кроме того, существует два типа ошибок на битовом уровне:

    • Bit Error - обнаружение активным узлом расхождения между посланным в шину уровнем и фактическим значением за счет реализации узлом механизма самоконтроля.
    • Stuff Error - наличие в поле сообщения шести следующих подряд бит 0 или 1 (ошибка битстаффинга).

    Благодаря этим механизмам обнаружения и коррекции ошибок вероятность пропуска ошибки крайне мала. Например, при скорости 500 Кбит/с, загруженности шины 25 % и использовании в течение 2000 часов в год возникает лишь одна необнаруженная ошибка за 1000 лет. Кроме того, в шине невозможна ситуация блокировки неисправным узлом работы всей сети. Такие узлы обнаруживаются и отключаются от обмена по шине.

    Разновидности CAN

    В настоящее время доступны различные устройства с CAN-интерфейсом, которые помимо передачи данных из одной точки в другую позволяют реализовать синхронизацию процессов и обслуживание по приоритетам. Более ранние реализации CAN-контроллеров используют кадры с 11-разрядным идентификатором и возможностью адресации до 2048 сообщений и соответствуют спецификации CAN V. 2.0A. Такие контроллеры носят название Basic CAN и характеризуются сильной загруженностью центрального процессора (ЦПУ), так как каждое входящее сообщение запоминается в памяти и ЦПУ решает, нужны ему данные сообщения или нет (рис. 4). Контроллеры Basic CAN содержат один передающий буфер и один или два приемных буфера сообщений. Чтобы послать или получить сообщение, требуется задействовать ЦПУ через прерывания «сообщение_послано» и «сообщение_получено». В результате проверки каждого входящего сообщения загрузка ЦПУ очень велика, что ограничивает реальную скорость обмена по сети. По этой причине такие контроллеры используются в сетях CAN с низкой скоростью обмена и/или малым количеством сообщений.

    Рис. 4. Структура контроллера Basic CAN

    Большинство выпускаемых сегодня CAN-контроллеров используют расширенные кадры сообщений с идентификатором длиной 29 разрядов, что позволяет адресовать до 536 млн сообщений. Такие контроллеры соответствуют спецификации CAN V. 2.0B (active) и называются контроллеры Full-CAN. В них предусмотрен буфер для нескольких сообщений, причем каждое сообщение имеет свою маску, и фильтрация осуществляется по соответствию идентификатора маске.

    В случае Full-CAN ЦПУ максимально разгружено, поскольку не обрабатывает ненужные сообщения (рис. 5). При приеме сообщения с идентификатором, соответствующим маске, оно запоминается в специальной зоне двухпортового ОЗУ, и работа ЦПУ прерывается. Full-CAN имеет также специальный тип сообщения, которое означает: «у кого бы ни находилась эта информация, пожалуйста, пошлите ее сейчас же». Контроллер Full-CAN автоматически прослушивает все сообщения и посылает запрошенную информацию.

    Рис. 5. Структура контроллера Full-CAN

    До недавнего времени в промышленности был широко распространен Basic CAN с 11-разрядным идентификатором. Этот протокол допускает простую связь между микроконтроллерами и периферийными устройствами при скорости обмена вплоть до 250 Кбит/с. Однако при стремительном удешевлении CAN-контроллеров использование Full-CAN стало оправданным и для связи с медленными устройствами. Если в промышленных приложениях требуется высокоскоростной (до 1 Мбит/с) обмен данными, то непременно следует использовать Full-CAN.

    Элементная база для CAN

    На самом нижнем уровне CAN-шины находится собственно двухпроводная линия с терминальными резисторами. Далее для повышения помехоустойчивости расположен дифференциальный приемопередатчик - трансивер. На следующем уровне - контроллер со встроенным модулем или автономный модуль CAN, подключаемый к главному контроллеру через параллельный или последовательный порт. Связь с узлами CAN, осуществляющими обмен информацией, ведется через линии портов микроконтроллеров. CAN-контроллеры осуществляют процедуру приема-передачи данных и соединяются с шиной двумя сигналами: RxD для приема с шины и TxD для передачи на шину. Реализация CAN-шины с помощью микроконтроллеров Infineon представлена на рис. 6.

    Рис. 6. Реализация CAN-шины с помощью микроконтроллеров Infineon

    Микроконтроллеры с CAN-модулем

    Одним из факторов, обеспечивших популярность CAN, является богатый выбор и доступная цена элементной базы различных производителей - Infineon, Motorola, Microchip, Philips и др.

    В данной статье упор сделан на элементную базу Infineon. Такое решение основано, в частности, на результатах опроса, проводимого на сайте Keil Software (www.keil.com) для микроконтроллерных платформ 8051/251/С166. На вопрос, какой микроконтроллер со встроенным CAN вы используете, по выборке из 2111 респондентов ответы распределились согласно табл. 1.

    Таблица 1. Результаты опроса: "Какой микроконтроллер со встроенным CAN вы используете?"

    Фирма Infineon выпускает продукты во всех классах цена/производительность. В настоящее время доступны как 8-разрядные контроллеры C505CA, C515C, так и 16-разрядные: C161CS, C164CI, C167CR, 167CS (табл. 2). Самым дешевым кристаллом с CAN является C505CA. МК C161CS и C167СS содержат два CAN-модуля. Самый мощный и дорогой микроконтроллер TriCore TC1775 также содержит реконфигурируемый модуль TwinCAN с двумя модулями CAN на 32 сообщения. TriCore - это первый 32-разрядный микроконтроллер Infineon с архитектурой DSP, оптимизированный для встроенных приложений реального времени, который заменяет собой МК, процессор DSP и заказную микросхему ASIC. Встроенный модуль соответствует спецификации CAN V2.0 B active и содержит память на 15 сообщений для приема/передачи с собственными идентификаторами, битами состояния и управления. Кроме того, он содержит регистры маски для фильтрации входящих сообщений и оснащен двумя приемными буферами. Встроенный модуль CAN позволяет строить системы с разнообразными задачами, используя минимальное количество микросхем внешнего интерфейса. Подключение любого из микроконтроллеров Infineon к CAN-шине осуществляется по одним и тем же принципам. Пример соединения C167CR с CAN-шиной представлен на рис. 7.

    Таблица 2. CAN-микроконтроллеры фирмы Infineon

    Тип Версия CAN Кол-во сообщ. CAN-модуль Корпус Примечание
    С505СА V2.0 B 15 1 x CAN MQFP-44 8 bit MC
    С151С V2.0 B 15 1 x CAN MQFP-80 8 bit MC
    С161СS V2.0 B 30 2 x CAN TQFP-128 16 bit MC
    C164CI V2.0 B 15 1 x CAN MQFP-80 16 bit MC
    C167CR V2.0 B 15 1 x CAN MQFP-144 16 bit MC
    C167CS V2.0 B 30 2 x CAN MQFP-144 16 bit MC
    TC1775 V2.0 B 32 TwinCAN BGA-329 32 bit MC
    SAE81C90 V2.0 A 16 1 x CAN PLCC-44 Stand Alone
    SAE81C91 V2.0 A 16 1 x CAN PLCC-28 Stand Alone
    SAK82C900 V2.0 B 32 TwinCAN P-DSO-28 Stand Alone

    Кроме того, следует сказать также несколько слов о МК фирмы Philips - одного из родоначальников элементной базы CAN. На смену устаревшему автономному CAN-контроллеру Philips PCA82C200 пришел полностью совместимый с ним контроллер SJA1000, работающий со стандартом CAN V2.0 B. Необходимо отметить, что PCA82C200 поддерживает только стандарт CAN V2.0 A и способен передавать и принимать только стандартный CAN-протокол, то есть при приеме расширенного кадра он генерирует ошибку и может разрушить всю сеть. В SJA1000 за счет поддержки стандарта PeliCAN (чтение и запись счетчиков ошибок, программирование их количественного порога) значительно расширены возможности по управлению CAN.

    Рис. 7. Пример соединения МК С167CR c CAN-шиной

    В результате объединения SJA1000 с ядром XA появился 16-разрядный МК XAC3 с интегрированным CAN-интерфейсом. Совместимый с 8051 режим микроконтроллера Philips XA позволяет осуществить простой переход от 8-разрядной архитектуры 8051 к 16-разрядной, что особенно важно для сохранения преемственности программного обеспечения. Среди 8-разрядных МК следует отметить также Philips P80C592, P8xC591 и 8xCE598.

    Motorola тоже предлагает широкий спектр микроконтроллеров с интегрированным CAN-модулем: от самых дешевых 8-разрядных МК 68HC05X до 32-разрядного Power PC MPC555 с дуальным CAN V2.0 B.

    Продолжение следует

    Промышленная сеть реального времени CAN представляет собой сеть с общей средой передачи данных. Это означает, что все узлы сети одновременно принимают сигналы передаваемые по шине. Невозможно послать сообщение какому-либо конкретному узлу. Все узлы сети принимают весь трафик передаваемый по шине. Однако, CAN-контроллеры предоставляют аппаратную возможность фильтрации CAN-сообщений.

    Каждый узел состоит из двух составляющих. Это собственно CAN контроллер, который обеспечивает взаимодействие с сетью и реализует протокол, и микропроцессор (CPU).

    Рис. 1. Топология сети CAN.

    CAN контроллеры соединяются с помощью дифференциальной шины, которая имеет две линии - CAN_H (can-high) и CAN_L (can-low), по которым передаются сигналы. Логический ноль регистрируется, когда на линии CAN_H сигнал выше, чем на линии CAN_L. Логическая единица - в случае когда сигналы CAN_H и CAN_L одинаковы (отличаются менее чем на 0.5 В). Использование такой дифференциальной схемы передачи делает возможным работу CAN сети в очень сложных внешних условиях. Логический ноль - называется доминантным битом, а логическая единица - рецессивным. Эти названия отражают приоритет логической единицы и нуля на шине CAN. При одновременной передаче в шину лог. нуля и единицы, на шине будет зарегестрирован только логический ноль (доминантный сигнал), а логическая единица будет подавлена (рецессивный сигнал).

    Типы сообщений сети CAN.

    Данные в CAN передаются короткими сообщениями-кадрами стандартного формата. В CAN существуют четыре типа сообщений:

    • Data Frame
    • Remote Frame
    • Error Frame
    • Overload Frame

    Data Frame - это наиболее часто используемый тип сообщения. Он состоит из следующих основных частей:

    • поле арбитража (arbitration field) определяет приоритет сообщения в случае, когда два или более узлов одновременно пытаются передать данные в сеть. Поле арбитража состоит в свою очередь из:
      • для стандарта CAN-2.0A, 11-битного идентификатора + 1 бит RTR (retransmit)
      • для стандарта CAN-2.0B, 29-битного идентификатора + 1 бит RTR (retransmit)

      Следует отметить, что поле идентификатора, несмотря на свое название никак не идентифицирует само по себе ни узел в сети, ни содержимое поля данных. Для Data кадра бит RTR всегда выставлен в логический ноль (доминантный сигнал).

    • поле данных (data field) содержит от 0 до 8 байт данных
    • поле CRC (CRC field) содержит 15-битную контрольную сумму сообщения, которая используется для обнаружения ошибок
    • слот подтверждения (Acknowledgement Slot) (1 бит), каждый CAN-контроллер, который правильно принял сообщение посылает бит подтверждения в сеть. Узел, который послал сообщение слушает этот бит, и в случае если подтверждение не пришло, повторяет передачу. В случае приема слота подтверждения передающий узел может быть уверен лишь в том, что хотя бы один из узлов в сети правльно принял его сообщение.

    Рис. 2. Data frame стандарта CAN 2.0A.

    Remote Frame - это Data Frame без поля данных и с выставленным битом RTR (1 - рецессивные бит). Основное предназначение Remote кадра - это инициация одним из узлов сети передачи в сеть данных другим узлом. Такая схема позволяет уменьшить суммарный трафик сети. Однако, на практике Remote Frame сейчас используется редко (например, в DeviceNet Remote Frame вовсе не используется).

    Error Frame - это сообщение которое явно нарушает формат солобщения CAN. Передача такого сообщения приводит к тому, что все узлы сети регистрируют ошибку формата CAN-кадра, и в свою очередь автоматически передают в сеть Error Frame. Результатом этого процесса является автоматическая повторная передача данных в сеть передающим узлом. Error Frame состоит из поля Error Flag, которое состоит из 6 бит одинакового значения (и таким образом Error frame нарушает проверку Bit Stuffing, см. ниже), и поля Error Delimiter, состоящее из 8 рецессивных битов. Error Delimiter дает возможность другим узлам сети обнаружив Error Frame послать в сеть свой Error Flag.

    Overload Frame - повторяет структуру и логику работы Error кадра, с той разницей, что он используется перегруженным узлом, который в данный момент не может обработать поступающее сообщение, и поэтому просит при помощи Overload-кадра о повторной передаче данных. В настоящее время Overload-кадр практически не используется.

    Контроль доступа к среде передачи (побитовый арбитраж).

    Поле арбитража CAN-кадра используется в CAN для разрешения коллизий доступа к шине методом не деструктивного арбитража. Суть метода не деструктивного арбитража заключается в следующем. В случае, когда несколько контроллеров начинают одновременную передачу CAN кадра в сеть, каждый из них сравнивает, бит, который собирается передать на шину с битом, который пытается передать на шину конкурирующий контроллер. Если значения этих битов равны, оба контроллера передают следующий бит. И так происходит до тех пор, пока значения передаваемых битов не окажутся различными. Теперь контроллер, который передавал логический ноль (более приоритетный сигнал) будет продолжать передачу, а другой (другие) контроллер прервёт свою передачу до того времени, пока шина вновь не освободится. Конечно, если шина в данный момент занята, то контроллер не начнет передачу до момента её освобождения.

    Рис. 3. Побитовый арбитраж на шине CAN.

    Методы обнаружения ошибок.

    CAN протокол определяет пять способов обнаружения ошибок в сети:

    • Bit monitoring
    • Bit stuffing
    • Frame check
    • ACKnowledgement Check
    • CRC Check

    Bit monitoring - каждый узел во время передачи битов в сеть сравнивает значение передаваемого им бита со значением бита которое появляется на шине. Если эти значения не совпадают, то узел генерирует ошибку Bit Error. Естественно, что во время арбитража на шине (передача поля арбитража в шину) этот механизм проверки ошибок отключается.

    Bit stuffing - когда узел передает последовательно в шину 5 бит с одинаковым значением, то он добавляет шестой бит с противоположным значением. Принимающие узлы этот дополнительный бит удаляют. Если узел обнаруживает на шине больше 5 последовательных бит с одинаковым значением, то он генерирует ошибку Stuff Error.

    Frame Check - некоторые части CAN-сообщения имеют одинаковое значение во всех типах сообщений. Т.е. протокол CAN точно определяет какие уровни напряжения и когда должны появляться на шине. Если формат сообщений нарушается, то узлы генерируют ошибку Form Error.

    ACKnowledgement Check - каждый узел получив правильное сообщение по сети посылает в сеть доминантный (0) бит. Если же этого не происходит, то передающий узел регистрирует ошибку Acknowledgement Error.

    CRC Check - каждое сообщение CAN содержит CRC сумму, и каждый принимающий узел подсчитывает значение CRC для каждого полученного сообщения. Если подсчитанное значение CRC суммы, не совпадает со значением CRC в теле сообщения, принимающий узел генерирует ошибку CRC Error.

    Механизм ограничения ошибок (Error confinement).

    Каждый узел сети CAN, во время работы пытается обнаружить одну из пяти возможных ошибок. Если ошибка обнаружена, узел передает в сеть Error Frame, разрушая тем самым весь текущий трафик сети (передачу и прием текущего сообщения). Все остальные узлы обнаруживают Error Frame и принимают соответствующие действия (сбрасывают принятое сообщение). Кроме того, каждый узел ведет два счетчика ошибок: Transmit Error Counter (счетчик ошибок передачи) и Receive Error Counter (счетчик ошибок приема). Эти счетчики увеличиваются или уменьшаются в соответствие с несколькими правилами. Сами правила управления счетчиками ошибок достаточно сложны, но сводятся к простому принципу, ошибка передачи приводит к увеличению Transmit Error счетчика на 8, ошибка приема увеличивает счетчик Receive Error на 1, любая корректная передача/прием сообщения уменшают соответствующий счетчик на 1. Эти правила приводят к тому, что счетчик ошибок передачи передающего узла увеличивается быстрее, чем счетчик ошибок приема принимающих узлов. Это правило соответствует предположению о большой вероятности того, что источником ошибок является передающий узел.

    Каждый узел CAN сети может находится в одном из трех состояний. Когда узел стартует он находится в состоянии Error Active. Когда, значение хотя бы одного из двух счетчиков ошибок превышает предел 127, узел переходит в состояние Error Passive. Когда значение хотя бы одного из двух счетчиков превышает предел 255, узел переходит в состояние Bus Off.

    Узел находящийся в состоянии Error Active в случае обнаружения ошибки на шине передает в сеть Active Error Flags. Active Error Flags сотстоит из 6 доминантных бит, поэтому все узлы его регистрируют. Узел в состоянии Passive Error передает в сеть Passive Error Flags при обнаружении ошибки в сети. Passive Error Flags состоит из 6 рецессивных бит, поэтому остальные узлы сети его не замечают, и Passive Error Flags лишь приводит к увеличению Error счетчика узла. Узел в состоянии Bus Off ничего не передает в сеть (не только Error кадры, но вообще никакие другие).

    Адресация и протоколы высокого уровня

    В CAN не существует явной адресации сообщений и узлов. Протокол CAN нигде не указывает что поле арбитража (Identification field + RTR) должно использоваться как идентификатор сообщения или узла. Таким образом, идентификаторы сообщений и адреса узлов могут находится в любом поле сообщения (в поле арбитража или в поле данных, или присутствовать и там, и там). Точно также протокол не запрещает использовать поле арбитража для передачи данных.

    Утилизация поля арбитража и поля данных, и распределение адресов узлов, идентификаторов сообщений и приоритетов в сети является предметом рассмотрений так называемых протоколов высокого уровня (HLP - Higher Layer Protocols). Название HLP отражает тот факт, что протокол CAN описывает только два нижних уровня эталонной сетевой модели ISO/OSI, а остальные уровни описываются протоколами HLP.

    Рис. 4. Логическая структура протокола CAN.

    Существует множество таких высокоуровневых протоколов. Наиболее распространенные из них это:

    • DeviceNet
    • CAL/CANopen
    • CanKingdom

    Физичекий уровень протокола CAN

    Физический уровень (Physical Layer) протокола CAN определяет сопротивление кабеля, уровень электрических сигналов в сети и т.п. Существует несколько физических уровней протокола CAN (ISO 11898, ISO 11519, SAE J2411).

    В подавляющем большинстве случаев используется физический уровень CAN определенный в стандарте ISO 11898. ISO 11898 в качестве среды передачи определяет двухпроводную дифференциальную линию с импедансом (терминаторы) 120 Ом (допускается колебание импеданса в пределах от 108 Ом до 132 Ом. Физический уровень CAN реализован в специальных чипах - CAN приемо-передатчиках (transceivers), которые преобразуют обычные TTL уровни сигналов используемых CAN-контроллерами в уровни сигналов на шине CAN. Наиболее распространенный CAN приемо-передатчик - Phillips 82C250, который полностью соответствует стандарту ISO 11898.

    Махимальная скорость сети CAN в соответствие с протоколом равна 1 Mbit/sec. При скорости в 1 Mbit/sec максимальная длина кабеля равна примерно 40 метрам. Ограничение на длину кабеля связано с конечной скоростью света и механизмом побитового арбитража (во время арбитража все узлы сети должны получать текущий бит передачи одновременно, те сигнал должен успеть распространится по всему кабелю за единичный отсчет времени в сети. Соотношение между скоростью передачи и максимальной длиной кабеля приведено в таблице:

    Разъемы для сети CAN до сих пор НЕ СТАНДАРТИЗОВАНЫ. Каждый протокол высокого уровня обычно определяет свой тип разъемов для CAN-сети.

    ENG 192Kb Control Area Network Rus CAN 2.0 A Rus CAN 2.0 В CAN протоколы высокого уровня Шины для бортовых автомобильных систем

    CAN (Control Area Network) - последовательная магистраль, обеспечивающая увязку в сеть "интеллектуальных" устройств ввода/вывода, датчиков и исполнительных устройств некоторого механизма или даже предприятия. Характеризуется протоколом, обеспечивающим возможность нахождения на магистрали нескольких ведущих устройств, обеспечивающим передачу данных в реальном масштабе времени и коррекцию ошибок, высокой помехоустойчивостью. Система CAN обеспечена большим количеством микросхем, обеспечивающих работу подключенных к магистрали устройств, разработку которых начинала фирма BOSH для использования в автомобилях, и в настоящее время широко используемых в автоматизации промышленности. Цеколёвка разема приведена на рисунке.

    • Предназначен для организации высоконадежных недорогих каналов связи в распределенных системах управления. Интерфейс широко применяется в промышленности, энергетике и на транспорте. Позволяет строить как дешевые мультиплексные каналы, так и высокоскоростные сети.
    • Скорость передачи задается программно и может быть до 1 Мбит/с. Пользователь выбирает скорость, исходя из расстояний, числа абонентов и емкости линий передачи.
    Расстояние, м 25 50 100 250 500 1000 2500 5000
    Скорость, Кбит/с 1000 800 500 250 125 50 20 10
    • Максимальное число абонентов, подключенных к данному интерфейсу фактически определяется нагрузочной способностью примененных приемопередатчиков. Например, при использовании трансивера фирмы PHILIPS PCA82C250 она равна 110.
    • Протокол CAN использует оригинальную систему адресации сообщений. Каждое сообщение снабжается идентификатором, который определяет назначение передаваемых данных, но не адрес приемника. Любой приемник может реагировать как на один идентификатор, так и на несколько. На один идентификатор могут реагировать несколько приемников.
    • Протокол CAN обладает развитой системой обнаружения и сигнализации ошибок. Для этих целей используется поразрядный контроль, прямое заполнение битового потока, проверка пакета сообщения CRC-полиномом, контроль формы пакета сообщений, подтверждение правильного приема пакета данных. Хемминговый интервал d=6. Общая вероятность необнаруженной ошибки 4.7x10 -11 .
    • Система арбитража протокола CAN исключает потерю информации и времени при "столкновениях" на шине.
    • Интерфейс с применением протокола CAN легко адаптируется к физической среде передачи информации. Это может быть дифференциальный сигнал, оптоволокно, просто открытый коллектор и т.п. Несложно делается гальваническая развязка.
    • Элементная база, поддерживающая CAN, широко выпускается в индустриальном исполнении.


    Загрузка...