sonyps4.ru

Бюджетная фреонка: миф или реальность?! Корпус c фреоном от Thermaltake.

Который проводит фирма Gigabyte. Требовалось написать обзор корпуса 3D Aurora. Я сначала согласился, а потом, когда прикинул что к чему, призадумался. Ведь я же не профессиональный писатель обзоров, к тому же серийными корпусами не пользуюсь уже года как три, как минимум. И если честно и пристально посмотреть правде в глаза, становится кристально ясно – писать этот обзор совершенно неинтересно и, естественно, ужасно не хочется. Я уже хотел звонить и отказываться, но все откладывал и откладывал. Прошло какое-то время, и обещание самым естественным образом забылось.

Две недели назад до меня все же дошла очередь на получение корпуса. Я так "обрадовался", что дня три не открывал коробку. Но чувство долга в конце концов победило, и я заглянул внутрь. Скажу сразу: удивительно, но кейс мне понравился. Первое, что поразило, – это размеры: высота 54.5, глубина 51.5, а ширина обычная – 20.5 см.

Корпус выпускается в двух цветовых решениях, черном и серебристом. Мне достался черный вариант. Корпус позиционируется как high-end решение и не комплектуется блоком питания.

На меня эта черная громадина сразу произвела впечатление своим стильным, запоминающимся видом. Дизайнеры поработали на славу. Корпус хотя и большой, но легкий. Изготовлен почти целиком из алюминия. Покраска качественная, ровная, с шелковистым отблеском.

Доступ к пяти 5.25" отсекам и двум 3.5" открывает массивная алюминиевая дверка. Фиксируется дверка в закрытом положении магнитом. В качестве защиты от распоясавшихся злоумышленников эту дверку можно закрыть на ключ. Рядом с 3.5" отсеками расположены кнопки Power и Reset. Нажатие легкое, с приятным на слух легким щелчком.

Ниже дверки располагается выступающая панель, усыпанная вентиляционными отверстиями. За ней расположен 120-мм вентилятор с подсветкой. Воздух внутрь корпуса он втягивает через пылезащитный фильтр. Свет от вентилятора очень красиво пробивается сквозь вентиляционные отверстия.

Справа от этой панели, на боку, расположены два USB, один IEEE 1394 и пара mini-jack"ов: микрофон и наушники. Здесь же расположены и два светодиодных индикатора работы системного блока и активности HDD.

Вот внешний вид корпуса со снятой лицевой панелью

Алюминиевые боковые стенки имеют непривычное крепление. Для того чтобы их снять, стенки нужно не сдвигать, а немного оттянуть и приподнять вверх. Левая стенка для удобства оперативного снятия имеет ручку-защелку и еще один замок с ключом. Имеется в ней также и окно, но не традиционное, из акрилового стекла, а сетчатое, скорее даже дырчатое. Для дополнительной защиты внутренностей от пыли это окно ограждено изнутри еще более мелкой сеткой. Стоит корпус на четырех ножках, которые для устойчивости корпуса можно раздвинуть.

Шасси корпуса довольно крепкое благодаря большому количеству ребер жесткости и дополнительным усиливающим элементам. Нет ни намека на шаткость конструкции. Внутри корпуса много свободного пространства, особенно понравилось большое расстояние между материнской платой и отсеком блока питания.

Корпус рассчитан на безотверточную сборку. Дисководы устанавливаются с помощью пластиковых салазок. Заглушки слотов карт расширения не выламываемые, а съемные, и крепятся все одновременно специальным рычагом-ключом.

Отсек для жестких дисков расположен поперек корпуса. Комфортную температуру винчестерам обеспечивает обдув этого отсека 120-мм вентилятором. В этом же отсеке расположен черный пластиковый бокс, содержащий два переходника питания для SATA-устройств, набор пластиковых салазок для установки 5.25" и 3.5" устройств в корпус, два пластмассовых крепежа для проводов, два комплекта ключей (разных) для передней дверцы и боковой крышки и комплект крепежных винтов.

Провода, идущие внутри корпуса от вентиляторов и лицевой панели, прикреплены к корпусу и уложены в черную трубку. Трассировка довольно удачна.

А теперь о том, что привлекло мое внимание к этому корпусу. Это, как ни странно, задняя панель.

На ней расположены два 120-мм прозрачных вентилятора с подсветкой. Ниже находятся два отверстия, защищенных резиновыми заглушками с лепестками. Сделано это для установки системы водяного охлаждения 3D Galaxy, производства все той же Gigabyte. Вот эти вентиляторы и отверстия превратили скучную процедуру написания обзора в увлекательное занятие.

Когда я увидел эти два 120-мм вентилятора на задней стенке корпуса, то мне сразу вспомнилась давняя идея встроить самодельную фреоновую систему охлаждения в стандартный корпус. Хотелось не просто встроить систему в корпус, а сделать это красиво, интересно и по возможности оригинально. Но я все никак не мог найти подходящий корпус, большой и прочный. Как-никак, компрессор, конденсор и прочие медные трубки весят прилично. К тому же компрессор при работе вибрирует. И, конечно, кроме прочностных ограничений хотелось, чтобы кейс стильно выглядел. 3D Aurora как раз и отвечал всем этим требованиям.

Все фреоновые системы, которые мне встречались, строились как блок, на котором стоит стандартный корпус. В дне корпуса приходится прорезать отверстие под испаритель. Но при такой компоновке отверстие должно быть приличных размеров. Калечить качественный корпус не хотелось, а здесь почти готовое решение.

Сразу начали вырисовываться контуры системы. Если разместить снаружи корпуса, напротив вытяжных вентиляторов, конденсор, то он будет ими отлично охлаждаться, заодно вентилируя корпус. Через готовые отверстия, предназначенные для трубок водяного охлаждения, прекрасно можно пропустить медные соединительные трубки системы. Остается только компрессор. Куда поместить его?

Недавно, экспериментируя со своей целиком самодельной фреоновой системой...

Я с удивлением обнаружил, что прекрасно слышу шум помпы, установленной в системе водяного охлаждения чипсета материнской платы. До этого я, как человек, избалованный бесшумностью своего основного компьютера ...

Считал фреонки ужасно шумными устройствами. Обычными воздушными кулерами я тоже давненько не пользовался, поэтому сравнивать было не с чем. А тут оказалось, что сквозь шум от двух не самых слабых компрессоров отчетливо слышна помпа производительностью 700 л/ч. Выходит, компрессоры шумят не так уж и сильно!

Так почему бы тогда не расположить компрессор просто на крыше корпуса? Это улучшит его охлаждение. Как выяснилось, шум от компрессора не так уж и велик. Прочности корпуса от Gigabyte для такой цели более чем достаточно. И я приступил к осуществлению задуманного.

По решению представителей фирмы Gigabyte корпус одновременно является и призом победителю конкурса. Я, естественно, пока таковым не являюсь и должен возвратить изделие неповрежденным. Поэтому задача несколько усложнялась.

Из-за этих ограничений я прикрепил компрессор L57TN не к верхней крышке корпуса, а к алюминиевой платформе, потихоньку открученной от гладильной доски. (Потом пришлось объяснять супруге, что штукенция эта, скорее всего, отвалилась сама, упала на пол в кладовке и, естественно, куда-то завалилась. Потом она, конечно, найдется... Но не буду отвлекаться.) Платформу эту с установленным компрессором через прокладку из пенофола я и поставил на крышу корпуса. Заодно это должно снизить вибрацию от работающего компрессора.

Теперь о конденсоре. Конденсор, чтобы не мешать подключению устройств к материнской плате, должен быть не шире 120-мм вентилятора, а по высоте соответствовать двум таким вентиляторам. Готовый такой не подобрать, но можно попробовать сделать самому.

Простейший конденсор можно изготовить, намотав спиралью обычную медную трубку. Но спираль имеет большие габариты. Поэтому я сделал из дерева шаблон плоской спирали и уже на него намотал медную трубку диаметром 6 мм.

По бокам спирали припаял медную проволоку с крепежными колечками, соответствующими крепежным отверстиям вытяжных вентиляторов. После я прикинул, как это будет размещаться вживую.

Крепить испаритель и всасывающую трубку к системе я решил на развальцовке. Соединительные муфты легко проходят в отверстия корпуса.

Чтобы не повредить корпус горелкой я, что смог, спаял отдельно от корпуса. Капиллярную трубку смотал в бухту, а последнюю часть пропустил через всасывающую трубку в испаритель.

Испаритель я применил самодельный. Сделан он из половинки серийного кулера Volkano7+.

Так выполняется развальцовка:

В качестве всасывающей я применил обычную медную трубку диаметром 10 мм. Не стал применять сильфон из нержавейки из-за того, что размеры корпуса позволяют помещать в него материнскую плату и без сильного отгиба испарителя. Да и не известно, кто окажется первым в конкурсе – возможно, придется вернуть корпус. Поэтому нестись в магазин за сильфоном я посчитал неразумным.

Вот что получилось.

Чтобы точнее подогнать размеры трубки, пришлось поставить в корпус материнскую плату.

Система собрана, спаяна и опрессована – пора приступать к теплоизоляции. Испаритель я изолировал полосой 3-мм пенофола, приклеив его на двусторонний скотч.

Предварительно я прикрепил к испарителю датчик от электронного термостата Dixell XR20C. На этом же устройстве будет построена и автоматика включения компьютера. Фреоновой системе для охлаждения процессора до определенной величины нужно время, иначе прилично разогнанный процессор может просто перегреться. Вышеуказанное устройство и обеспечит автоматическое включение компьютера по достижении определенной температуры на испарителе, значение которой можно установить вручную.

Существует целый ряд подобных устройств. Для использования в качестве автоматики они требуют минимальной доработки. Я использовал простейшее устройство, содержащее только контакты управления компрессором.

Работает прибор следующим образом. После включения устройство самодиагностируется, после чего замыкает контакты, которые по замыслу конструкторов и включают компрессор. По достижении на датчике определенной температуры размыкают контакты, отключая тем самым компрессор. После того как температура повысится, цикл повторяется.

В нашем случае компрессор работает постоянно, и управлять им не нужно. И требуется не выключать, а включить компьютер по достижении определенной температуры. Для этого нужно инвертировать выход устройства. Люди, хорошо разбирающиеся в электронике, без труда сами могут составить такую схемку, например, на "логике". Я же покажу, как собрать подобную схему человеку, далекому от электроники.

Мне кажется, что проще всего это можно сделать на автомобильном реле.

У реле есть несколько контактов. Два контакта – контакты катушки электромагнита. При подаче напряжения на них электромагнит притягивает коромысло, которое и замыкает одну группу контактов, размыкая другую. В нашем случае нам нужны контакты, замкнутые при отключенном питании катушки электромагнита реле. Если включить реле подобным образом,

происходит следующее. При включении терморегулятор подает напряжение на реле. Контакты, отвечающие за включение компьютера, размыкаются и остаются разомкнутыми до момента, когда термодатчик зафиксирует температуру, необходимую для включения компьютера. Тогда контакты терморегулятора размыкаются, а в реле замыкаются.

Конденсатор с сопротивлением нужен для имитации работы кнопки включения компьютера. Работает эта цепь следующим образом. При замыкании контактов Power ON конденсатором в цепи потечет ток зарядки конденсатора – аналог нажатия кнопки Power ON. После зарядки конденсатора ток в цепи прекращается – аналог отпускания кнопки Power ON. Емкость конденсатора должна быть в пределах 200-400 мкФ, сопротивление 15-20 кОм.

Для работы такой автоматики необходим источник питания напряжением 12 вольт. Также для работы фреоновой системы необходим обдув конденсора вентилятором. А как они будут работать, если блок питания включится только после того, как система должна набрать заданный минус? Поэтому специально для автоматики и работы вентиляторов нужно ставить в корпус отдельный блок питания, выдающий 12 вольт постоянного тока. Назову его блоком питания дежурного режима. К нему и подключаются автоматика и вентиляторы.

Для данной системы я собрал самодельный блок питания, но можно было купить и готовый. Нужно только обратить внимание на максимальный ток нагрузки такого блока. Он в данном случае должен составлять не менее одного ампера.

Всю эту электрическую часть я поместил в корпус от Hardcano, заменив у того лицевую панель на обычную заглушку 5.25" отсека, выкрашенную в серебристый цвет. Все-таки в пластмассе вырезать отверстия гораздо проще, чем в алюминии.

На фотографии видно, что электромонтаж не закончен. Справа от терморегулятора расположен выключатель. С его помощью и включается компрессор, да и все остальное. После сборки устанавливаем блок в отсек и подключаем к нему все провода.

Монтируем все комплектующие в корпус. Под материнскую плату для теплоизоляции я поместил кусок листового пенофола. Толщину подобрал такую, чтобы винты, крепящие материнскую плату к шасси, немного сжали этот теплоизолятор. Между платой и пенофолом не должно быть воздушных пузырей, иначе из этого воздуха при работе системы охлаждения на плату может выпасть конденсат и замкнуть контакты платы. Для гарантированного исключения этого неприятного момента плату под прокладкой я промазал слоем технического вазелина.

По отпечатку термопасты примеряем прилегание испарителя к процессору. Испаритель к процессору я прижимаю с помощью резьбовых шпилек. Корпус, как уже говорил, сверлить нельзя, и пришлось прикрутить эти шпильки прямо к отверстиям в материнской плате. Тут приключилась пара неприятностей, о которых я расскажу в заключительной части статьи.

После этого заканчиваем теплоизоляцию. Осталось самое простое – теплоизоляция трубок. Берется трубчатый рубафлекс, разрезается вдоль ножницами, одевается на трубки и склеивается. Вот и все готово для заправки системы.

Заправляю систему фреоном марки R22. Подробнее о заправке и вакуумировании написано уже более чем достаточно, поэтому не буду отнимать время и описывать эту процедуру еще раз. Напомню только, что в системе использовался компрессор марки L57TN, длина капилляра 2.9 метра. Заправляю систему до промерзания всасывающей трубки до входа в компрессор.

Система без нагрузки выдает температуру -43.8°C.

Выключаю систему. Проверяю еще раз прилегание испарителя к процессору, оказавшееся не слишком плотным. Всасывающая трубка имеет приличную жесткость и немного пружинит. К тому же теплоизоляция на испарителе немного ниже самого испарителя. Сделано это для исключения попадания воздуха в щели теплоизоляции. Притягивать же сильно испаритель к процессору я боюсь. Шпильки-то прикручены не к шасси корпуса, а к материнской плате, и есть риск выломать их из платы.

Отпечаток термопасты получается несколько "однобоким", а верхний левый угол испарителя почти не касается процессора. Но что делать, будем пробовать как есть.

Включаю систему. По достижении температуры на испарителе –20 включается сам компьютер. Автоматика отработала успешно, операционная система загружается – все нормально.

Конфигурация установленного железа такова:

  • процессор – AMD Athlon 64 3200+;
  • материнская плата – DFI Lan Party UT nF4 SLI-D;
  • видеокарта – Leadtek PX7800GT;
  • память – Digma DDR500;
  • жесткий диск – Seagate 160 Gb;
  • блок питания – Hiper R type 480 W;
  • термопаста – КПТ-8.

Первым делом проверяю систему на разгон процессора.

Но тут началась чертовщина. Дальше процессор почему-то гнаться отказался. Я снизил частоту опять до 3100 MHz, но Windows перестал грузиться. Еще более понизил частоту – опять то же самое. И тут я попробовал рукой прижать испаритель к процессору. Система загрузилась. Тогда я еще немного подтянул крепежные гайки. Система снова загрузилась при 3100 MHz, но тест S&M не проходила. Тогда я заглянул в BIOS. Там в разделе мониторинга температура процессора прыгала как гимнаст на батуте: то –14, то +14. Все ясно, причина в плохом прижиме испарителя к процессору. Видимо, от вибрации контакт процессор–испаритель меняется, и, как следствие, скачет температура, что и сказывается на стабильности работы системы.

Дальше подтягивать гайки уже откровенно страшно. Существует большая вероятность выдрать шпильки вместе с текстолитом платы. Но прижим все равно недостаточен. Выход только один: сверлить отверстия в шасси компьютера и сжимать процессор уже не между платой и испарителем, а между металлическим шасси и испарителем, без риска повреждения материнской платы. А сверлить корпус нельзя. Очень жаль, но придется остановиться на этом.

Теперь несколько слов о личных впечатлениях о работе системы. Плохой прижим испарителя – легко устраняемый дефект. Можно прямо по месту просверлить отверстия и закрепить все как следует. И если даже при плохом контакте операционная система загружается с частотой процессора 3100 МГц, то, скорее всего, при нормальном охлаждении этот результат увеличится. Теплоизоляция прекрасно справляется со своей задачей. Никаких следов конденсата не было обнаружено.

О шуме. Компрессор работает очень тихо. Если наклониться над ним и прислушаться, то слышен небольшой шелест. Основной шум исходит из открытого корпуса. Видимо, по нагнетающей трубке и через станину компрессора вибрация передается корпусу, и он издает низкочастотный гул. Я вначале был поражен, что шум идет не от компрессора, а из корпуса. Но потом разобрался, в чем дело. Судя по всему, для комфортной эксплуатации оклеивание корпуса виброшумоизоляцией обязательно.

Неплохо было бы привернуть ручки на верхнюю крышку корпуса. Вес корпуса за счет системы охлаждения увеличился, и передвигать его стало сложно. К тому же взяться не за что.

Также из-за размещения компрессора на верхней крышке корпуса центр тяжести системного блока поднялся. Поэтому теперь даже с разложенными ножками корпус немного неустойчив. Неплохо бы утяжелить нижнюю часть корпуса каким-нибудь балластом. Это поможет и снизить вибрацию корпуса.

Желательно укрепить верхнюю крышку корпуса – виброшумоизолировать и прикрепить компрессор непосредственно к ней. Также необходимо увеличить толщину резиновых прокладок, через которые конденсатор крепится к корпусу, и попробовать сделать амортизаторы между витками конденсора. Все это должно дополнительно снизить шумность системы. Хотя и в таком виде самым шумным компонентом системы является вентилятор видеокарты.

Если суммировать все вышесказанное, то мы получили удобный, качественный корпус с прекрасной вентиляцией и с возможностью встраивания не только водяной, но и фреоновой системы охлаждения. Можно сказать, мечта оверклокера. Когда смотришь на этот корпус, не оставляет чувство, что перед тобой солидная, добротная и вместе с тем красивая и стильная вещь.

24.08.2016, СР, 14:42, Мск

От правильного выбора системы охлаждения ЦОДа напрямую зависит его ключевая характеристика – надежность. Существует несколько способов отвода тепла из дата-центра, но мы рассмотрим только два наиболее распространенных из них – это «фреоновые кондиционеры» (с воздушным охлаждением) и «водяные кондиционеры» (получающие холод от чиллеров). Итак, «фреон» или «вода»?

Как и любая сложная техническая область, тема теплоотвода в ЦОДах обросла большим количеством мифов и предубеждений.

Первая группа мифов говорит о том, что «вода представляет опасность для ИТ-оборудования».

Миф 1: водяное охлаждение – это когда вода внутри сервера

Это не совсем верно: существуют серверные платформы с прямым охлаждением при помощи воды, но это пока экзотика. Наиболее распространенный способ отвода тепла от ИТ-оборудования – при помощи принудительно прогоняемого через его радиаторы воздуха. Описанные выше способы отвода тепла описывают процесс на уровне ЦОДа в целом, а не на уровне единиц ИТ-оборудования.

Миф 2: вода в серверном помещении – это недопустимый риск

Существует множество технических решений по недопущению попадания воды в ИТ-оборудование при протечке. Для этого надо проработать возможные сценарии аварий и принять соответствующие проектные решения.

Вторая группа мифов: водяная система очень дорогая и сложная в эксплуатации, а фреоновая привычнее и эффективнее.

Миф 3: водяная система – это слишком сложно и дорого

Необходимо рассматривать конкретные случаи. Возможна ситуация, когда наоборот – фреоновая система будет слишком сложной и дорогой, особенно если рассматривать не только строительство ЦОД, но и его обслуживание.

Миф 4: водяное охлаждение – это для больших ЦОДов

Да, у вас может быть обычная серверная комната на 20 стоек. Но необходимо произвести оценку, ведь может оказаться, что для этой серверной потребуются 20 отдельных фреоновых кондиционеров, поэтому водяная система будет выгоднее при эксплуатации.

Третья группа мифов порождена незнанием устройства систем охлаждения.

Миф 5: водяная система питается от магистрали водоснабжения

Нет, водяные системы питаются от чиллера специально подготовленной очищенной охлажденной водой или водно-гликолевой смесью с добавлением ингибиторов коррозии.

Миф 6: можно использовать бытовой фреоновый кондиционер

Идея «дуть на оборудование холодом» от бытового кондиционера – следствие неправильного понимания задачи. Необходимо не просто подавать охлажденный воздух на оборудование, а отводить избыточное тепло, чтобы обеспечить соответствующие температурные условия эксплуатации. При этом охлажденный воздух выступает всего лишь в роли теплоносителя для перемещения определенного количества теплоты из помещения ЦОДа на улицу. Как известно из школьного курса физики, количество теплоты равняется удельной теплоемкости, помноженной на массу вещества и на разницу температур до нагрева и после нагрева. Если масса вещества (объем подаваемого из кондиционера воздуха) будет значительно меньше необходимого, то не спасет даже понижение температуры воздуха. Бытовые кондиционеры имеют в несколько раз меньшую производительность подачи воздуха, чем прецизионные. К этому можно добавить, что часть их мощности тратится на осушение воздуха (для создания комфортных условий для человека) и что они имеют малый ресурс (не предназначены для постоянной работы круглые сутки во все времена года).

Нам, людям третьего тысячелетия, ни к чему прозябать среди мифов и заблуждений. Мы можем оценить ситуацию в свете знаний. Ограничимся основными свойствами обоих вариантов, и рассмотрим их более внимательно.

Преимущества фреоновых систем

Относительная простота системы

По сути, фреоновый кондиционер, как и домашняя сплит-система, состоит из двух половинок: собственно кондиционера, устанавливаемого в охлаждаемом помещении, и внешнего блока, который размещается на улице. Обычно в самом кондиционере расположены вентиляторы, охлаждающий воздух теплообменник (испаритель), компрессор и управляющая электроника. Дополнительно в кондиционере могут быть пароувлажнитель, поднимающий влажность воздуха до требуемой, воздушные фильтры, и т. д. Внешний блок прецизионного кондиционера устроен совсем просто: только теплообменник, отдающий тепло в окружающий его воздух, вентилятор, и автоматика, этим вентилятором управляющая.

Соединяются кондиционер и его внешний блок парой медных трубок небольшого диаметра (обычно 15-20 миллиметров, редко больше), которые могут быть проложены даже в стесненных условиях.

Длительность монтажа одного кондиционера обычно не превышает двух-трех дней. Вне зависимости от мощности кондиционера принцип его действия не изменяется: и маленький потолочный аппарат на 7 кВт, и огромная 200-киловаттная машина устроены, в принципе, одинаково.

Полная независимость кондиционеров друг от друга

Если нужны несколько кондиционеров, они устанавливаются как независимые друг от друга агрегаты. Каждому кондиционеру – свой внешний блок с отдельными трубопроводами. Из этого свойства вытекают следующие дополнительные преимущества. Первое – высокая надежность резервированной системы: у нескольких кондиционеров, работающих в одном помещении, нет общих узлов и блоков, они полностью независимы, и, значит, нет единой точки отказа. Выход из строя одного кондиционера никак не влияет на работу остальных. Второе преимущество – простота расширения системы: во многих случаях для увеличения производительности системы в целом можно просто установить в этом же помещении еще один кондиционер.

Меньше начальные капитальные вложения

Как справедливый итог вышеперечисленных (и многих других) объективных свойств, фреоновая система оказывается и в закупке, и в монтаже, и в пуско-наладочных работах значительно (иногда – в два-три раза) дешевле, чем водяная с аналогичной производительностью. Простота прокладки медных труб и установки внешнего блока, полная независимость кондиционеров друг от друга и несложная процедура пусконаладки позволяют разворачивать системы охлаждения достаточно оперативно и сравнительно недорого.

Недостатки фреоновых систем

Сравнительно малая допустимая энергетическая плотность ЦОД

К сожалению, «удельная мощность одного кондиционера» получается не очень большой. Особенно, если рассматривать самый эффективный и популярный в настоящее время конструктив: компактные внутрирядные кондиционеры, устанавливаемые в рядах с серверными шкафами. Мощность в 15-20 кВт для корпуса шириной 600 мм (размером как обычный серверный шкаф) и не более 10-12 кВт для компактного 300-миллиметрового корпуса – практически предел для фреоновых машин. Есть отдельные экземпляры, мощность которых немного выше «средней по рынку», но это достигается уплотнением внутренней компоновки, как следствие – снижением ремонтопригодности аппарата.

В итоге высокая мощность системы может быть достигнута только установкой большого количества кондиционеров: каждый со своим внешним блоком, со своими трубопроводами… В следствие этого использование фреоновых кондиционеров в ЦОД средней плотности, с удельной нагрузкой на стойку от 7 до 10 кВт, представляется затруднительным, а при удельной нагрузке в 15 кВт и более – почти невозможным.

Каждому внутреннему блоку должен соответствовать отдельный внешний блок

Классический случай, когда достоинство оборачивается недостатком, переходя из количества в новое, но уже негативное, качество. Попробуйте представить, как будет выглядеть фасад вашего здания, если на нем повесить десять-пятнадцать внешних блоков (размер каждого, например, полтора на два метра). А шахта с тремя десятками труб? Комментарии к этой картине, пожалуй, излишни. Попытками «оптимизации» можно только усугубить проблему: существуют довольно жесткие ограничения по расстоянию от кондиционера до его внешнего блока. Типичное ограничение по длине трубок составляет 30-40 метров, редко больше, причем считается не настоящая длина, а «эквивалентная»: с учетом всех изгибов и поворотов. Поэтому равномерно распределить внешние блоки по большой площади не получится: они все равно будут создавать «толпу» около машинного зала ЦОДа.

Малая гибкость системы

В варианте охлаждения с подачей воздуха через фальшпол мощность одного кондиционера может достигать величин в 200 и более кВт, это уже довольно крупный агрегат, размером в несколько метров и весом в пару-тройку тонн. С мощностью порядок, но как ее регулировать? У фреоновой холодильной машины есть такой параметр, как минимальная нагрузка: если 100-киловаттный кондиционер заставить удалять из ЦОД всего 5 кВт тепла, то он просто не справится с этой задачей. Слишком маленькая тепловая нагрузка не сможет испарять то количество фреона, которое достаточно для нормальной работы цикла работы холодильной машины. Производители идут на разные ухищрения, чтобы побороть эту проблему, например, оснащают кондиционеры встроенными нагревателями, которые «донагружают» кондиционер дополнительным теплом. Получается абсурдная ситуация: чтобы охладить воздух – надо сначала нагреть воздух, потратив электричество не только на охлаждение, но и на нагрев. Что подводит нас к следующему недостатку фреоновых систем.

Низкая энергоэффективность

Грубо говоря – КПД любого кондиционера составляет 200 и более процентов: для того чтобы «сдуть» с оборудования, например, 100 кВт тепла, кондиционер потребляет от сети не более 50 кВт электричества, а зачастую и еще меньше. Однако на практике все не так хорошо: с учетом проблем регулирования мощности и некоторых «накладных расходов» на охлаждение оборудования фреоновыми кондиционерами вы потратите почти столько же электроэнергии, сколько потребляет само охлаждаемое оборудование. Но, как говорят в «магазине на диване», и это еще не все. Если мы попробуем построить график потребляемого тока во времени, то мы увидим, что электричество потребляется непостоянно, и неравномерно. На графике будут периоды времени, когда потребление мало (в эти моменты времени работают только вентиляторы, а фреоновый компрессор простаивает). Также на графике мы увидим периоды с «нормальным» энергопотреблением (работают и вентиляторы, и компрессор).

Кроме того, на графике будут кратковременные, но очень неприятные моменты с резкими и значительными бросками потребляемого тока. Это моменты включения компрессора после простоя, и броски эти называются «пусковой ток». Величина пускового тока обычно очень ощутима, и превышает номинальное значение в 10-15 раз. Это означает, что все составляющие в системе электропитания кондиционера должны выдерживать кратковременную, но значительную перегрузку. Например, если кондиционер питается от источника бесперебойного питания – этот ИБП должен выдержать перегрузку в 1000% в течение 5-15 секунд. Таких ИБП, к сожалению, не бывает, и для обеспечения работоспособности всей системы приходится использовать заведомо более мощный (переразмеренный) ИБП, который стоит «переразмеренных» денег. То есть фреоновая система предъявляет особые требования к смежной системе, значительно удорожая ее.

Отсутствие фрикулинга

Кроме того, что фреоновый кондиционер потребляет много электроэнергии – следует отметить тот факт, что он потребляет ее постоянно. Круглый год. А если на улице зима и кругом полным-полно «бесплатного» холодного воздуха – фреоновый кондиционер может потреблять еще больше электричества, потому что он вынужден подогревать свой внешний блок, «чтобы не замерз». Увы, нет никаких возможностей для экономии за счет природы.

Сложности ремонта

И о ремонте. Если из трубы капает вода, то труба обычно мокрая, а под трубой лужа. Это очень упрощает поиск места протечки: где лужа – там и течет. Фреон же течет только при давлении в десятки атмосфер, поэтому при малейшем повреждении трубы он просто незримо улетучивается. Поиск места протечки – занятие нетривиальное и занимает много времени. Для восстановления работы системы во многих случаях требуются остановка кондиционера, удаление хладагента и полная перезаправка после ремонта.

Преимущества водяных систем

Рассмотрев фреоновые кондиционеры, обратим свой взгляд на более сложный и дорогой вариант: водяную систему. Здесь уже трудно говорить об отдельных кондиционерах (представить себе одинокий водяной кондиционер можно, но сложно), будем рассматривать систему из нескольких аппаратов, работающих сообща. Начнем опять с преимуществ.

Фрикулинг и энергоэффективность

Основная причина существования водяных кондиционеров в ЦОДе – это, конечно же, высокая экономическая эффективность, обусловленная как высокой эффективностью системы в целом, так и возможностью «бесплатного» использования «уличного холода» в течение нескольких месяцев в году. В условиях средней полосы России даже типовая система с водяными кондиционерами, работающая в «обычном» температурном режиме и не «заточенная» специально под высокую энергоэффективность, позволяет «бесплатно» охлаждать ИТ-оборудование в течение 4-5 месяцев (когда температура воздуха на улице отрицательная). С применением некоторых технологических хитростей период работы фрикулинга можно увеличить до 7-8 месяцев. Потребление электроэнергии системой кондиционирования в режиме фрикулинга крайне невелико. Например, 100-киловаттная система будет потреблять около 1 кВт на насосы, перекачивающие теплоноситель, приблизительно 3 кВт на вентиляторы, обдувающие теплообменник на улице, и около 12 кВт съедят вентиляторы в кондиционерах. Итого, «условный КПД» составляет приблизительно 600%, а не 200, как у фреоновых систем.

Большая допустимая энергетическая плотность ЦОДа

В отличие от фреонового кондиционера, водяной устроен очень просто: у него внутри нет ни компрессора, ни сложной системы регулирования давления рабочего вещества, ни множества трубок и клапанов… По сути своей, водяной кондиционер – это просто теплообменник с вентиляторами, прокачивающими через него воздух. Освободившееся от сложной начинки место не пропадает даром: его занимает теплообменник, который заметно больше, чем во фреоновом аппарате. А чем больше теплообменник, тем мощнее кондиционер, при прочих равных. То есть в том же размере. Современный внутрирядный водяной кондиционер мощностью 60 кВт может быть собран в корпусе размером в половину серверного шкафа: шириной 300 мм. Благодаря такой компактности и высокой «удельной мощности» водяные кондиционеры позволяют строить «энергетически высокоплотные» ЦОДы с удельной нагрузкой на серверный шкаф в 15-20 кВт и выше, не занимая кондиционерами места больше, чем ИТ-оборудованием.

Возможность выбора

Вспомним, что является источником холода для водяного кондиционера: очень обобщенно говоря – это «труба с холодной водой» (кстати, хоть мы и говорим «вода», в нашем климате под этим словом обычно подразумевается незамерзающая смесь, антифриз). Если система построена правильно, от потребления воды одним аппаратом работа всех остальных кондиционеров никак не зависит. Следствием этого является принципиальная возможность организовать систему таким образом, чтобы «на одной трубе сидели» и мощные кондиционеры для машинного зала ЦОД, и менее производительные кондиционеры для зоны ИБП, и совсем небольшие аппараты для вспомогательных помещений – таких, как электрощитовая, коммутационная, и т. п.

Небольшое количество «внешних блоков»

А откуда в этой трубе, собственно, появляется холодная вода? Воду охлаждает холодильная машина, «чиллер». По принципу действия чиллер очень похож на фреоновый кондиционер, только охлаждает он не воздух, а жидкий теплоноситель. А сколько должно быть в системе чиллеров? Сколько угодно, начиная от одного. Да-да, если мощность холодильной машины достаточна для работы всех кондиционеров, то машина может быть всего одна на любое число кондиционеров. Правда, обычно чиллеров все-таки несколько. Это делается для повышения гибкости, надежности и обеспечения поэтапного развития системы. Но два, три, пять чиллеров – это не десяток, два, или более внешних блоков. ЦОД не похож на елку, увешанную игрушками – и это хорошо.

Нет ограничений по удалению чиллеров от кондиционеров

Одна из проблем фреонового кондиционера – это небольшое расстояние от кондиционера до его внешнего блока. А как далеко можно установить чиллер? Все определяется только производительностью насоса, перекачивающего теплоноситель, и «потерями холода» (нагревом воды «по дороге» от чиллера к кондиционерам) из-за неидеальной теплоизоляции. Но это преодолеваемые сложности, поэтому вполне возможна установка холодильных машин на кровле многоэтажного здания, в дальнем углу территории, и в любом другом удобном месте. Встречаются здания, в которых фреоновые кондиционеры установить в принципе нельзя, а водяные системы в таких условиях вполне работоспособны.

Простое обнаружение протечек и оперативный ремонт магистралей

Как можно обнаружить, что вода уходит из трубы? По падению давления в системе. А как найти место утечки? Визуально! В большинстве случаев не нужны приборы – течеискатели, нет необходимости отключать систему и проводить длительный поиск места утечки. Более того, при наличии оборудования аварийной подпитки водяная система кондиционирования при незначительных утечках может функционировать достаточно долго, чтобы ремонт из экстренного превратился в плановый. Методика ремонта, кстати, зависит от выбранного материала трубопроводов, и в некоторых случаях он возможен без отключения системы. А если предусмотреть резервные трубопроводы, то никакая протечка не станет губительной и не приведет к остановке ЦОДа. Да, в чиллере есть фреон, и он тоже может улетучиться. Но чиллер является комплектным устройством, которое приходит с завода заправленным фреоном и маслом, поэтому вероятность утечки не очень велика.

Недостатки водяных систем

Конечно же, ничего нельзя получить бесплатно. Даже если не упоминать такой недостаток водяной системы, как значительные капитальные затраты на первоначальном этапе (увы, стоимость оборудования и монтажных работ могут превышать аналогичные показатели для фреоновых систем в два и более раза), есть и другие проблемы. О которых конечно, нельзя не упомянуть.

Наличие воды в машинном зале ЦОД

На самом деле – вода в том или ином количестве присутствует в любом ЦОДе. Это и дренаж конденсата из кондиционеров, и отопление в смежных помещениях, есть также риск протечки крыши или водопровода, и т. д. Но в системе кондиционирования вода находится под давлением, которое хоть и невелико (обычно 2-3 атмосферы), но все-таки увеличивает риск протечки и ускоряет вытекание воды через поврежденный трубопровод. В ЦОДе с водяным кондиционированием обязательно нужно предусматривать дренаж воды из-под фальшпола и принимать усиленные меры по гидроизоляции перекрытий и даже стен.

Проблемы с работой на малой нагрузке

Чиллер является фреоновой холодильной машиной, и он, к сожалению, не избавлен от такого недостатка, как неспособность работать со слишком низкой нагрузкой. А поскольку чиллеры обычно довольно мощные – величина минимально допустимой тепловой нагрузки может быть весьма значительной. Поэтому новый ЦОД придется сразу нагружать хотя бы на 30% от мощности единичного чиллера… или запускать в работу осенью: в режиме фрикулинга проблем с минимальной мощностью нет.

Место для установки чиллеров

Обратной стороной малого числа чиллеров и их высокой мощности являются размер и вес. Фреоновый компрессор и вся его обвязка находятся не в кондиционере, а в чиллере, теплообменник для фрикулинга тоже частенько интегрирован в общий конструктив, в итоге даже 50-киловаттный агрегат весит почти полторы тонны. На стену такой агрегат не повесить – нужна площадка на земле либо на крыше. На условный 100-киловаттный ЦОД таких чиллеров нужно три (третий – резервный), в итоге площадка будет размером как автостоянка на три машины и нагружена она будет тоже «на три машины» - почти на пять тонн.

Расширение ассортимента эксплуатируемого оборудования

Ну и, конечно, гидравлика. Насосы, теплообменники, запорная арматура – все это приведет к тому, что в штате ЦОД кроме электрика, дизелиста, и холодильщика придется завести еще и сантеника-гидравлика. Кстати, все трубы придется делать сразу, и на полную мощность, каким бы ни был первый пусковой комплекс.

Как выбирать

Что же в итоге выбрать, «воду» или «фреон»? Поскольку это инженерная задача, ее следует решать, учитывая все параметры строящегося объекта. Вот экспертное мнение: для каждого из реальных случаев существует оптимальное решение, и нет единого рецепта для всех, поэтому выбору архитектуры системы охлаждения необходимо уделять особое внимание, проводя вариантную проработку с обязательным привлечением специалистов. Предварительную оценку «за» и «против» можно сделать при помощи таблицы, приведенной в таблице.

Чеклист для определения вектора выбора технологии

Условия Ответ
Расчетная энергетическая плотность ниже чем 10 кВт на каждый ИТ-шкаф. Да / нет
Количество ИТ-шкафов в серверной или ЦОДе не превышает 10 шт. Да / нет
На расстоянии не более 25 м (по трассе) и на уровне ЦОДа (серверной), есть место для размещения внешних блоков (конденсаторов) кондиционеров. Да / нет
Нет режима жесткой экономии электроэнергии. Да / нет
В помещении машинного зала отсутствует возможность монтажа фальшпола. Да / нет
Тепловая нагрузка в первые месяцы эксплуатации ЦОД будет менее 10% от полной мощности. Да / нет
Существуют проблемы с правильной эксплуатацией систем отопления и водоснабжения. Да / нет
Легче купить мощный ИБП, чем усложнять систему охлаждения? Да / нет
Фрагментарное отключение системы кондиционирования не повлияет на работу основных систем ЦОД. Да / нет
Нет четкого понимания, какими темпами будет развиваться ЦОД и как долго он будет эксплуатироваться до первого расширения? Да / нет
Стоит задача уменьшения капиталовложений именно на первом этапе? Да / нет

Если ответов «да» получилось значительно больше, чем «нет», то вашему ЦОД вполне подойдет фреоновая система. Если ответов «нет» получилось больше, чем «да», рекомендуем присмотреться к водяной системе. Однако точный рецепт все-таки подскажет специалист, когда увидит ваш ЦОД «вживую», его помощью ни в коем случае пренебрегать не стоит.

Олег Сорокин,
эксперт по направлению ЦОД компании ICL-КПО ВС

От редактора (ALT-F13): Так уж получилось, что статью мы смогли опубликовать аж через два месяца после ее написания. За это время автор не сидел, сложа руки, а двигался дальше в сторону более экстремального охлаждения. Сейчас Steff занимается сборкой самодельных phase-change direct-die систем, в просторечии - «фреонок». На момент написания этих строк, он продемонстрировал уже второй вариант своей системы. Впрочем, первый также прекрасно работал. Так что строки, с которых начинается текст этой статьи - «Экстремальными методами охлаждения компьютера я увлёкся совсем недавно, так что это - описание моего первого эксперимента в этой области» можно считать недействительными:)

Экстремальными методами охлаждения компьютера я увлёкся совсем недавно, так что это - описание моего первого эксперимента в этой области.

Водяное охлаждение я использовал на протяжении нескольких лет, но пришёл момент, когда захотелось большего. Можно было конечно купить готовую систему Asetek VapoChill или nVentiv Mach II (экс-Prometeia), но у фреонок есть свои недостатки. Во-первых это цена, во-вторых - способность охлаждать только один элемент системы. Для охлаждения, к примеру, видеокарты пришлось бы покупать еще одно устройство и серьезно заморачиваться с установкой.
Начинать свое знакомство с экстремальным охлаждением с постройки самодельной direct-die системы показалось мне достаточно сложной задачей, поэтому я выбрал другой путь.
Альтернативой direct-die охлаждения являются ватерчиллеры, то есть системы на базе водяного охлаждения с эффективным охлаждением хладагента, позволяющие достичь температур ниже окружающих.
Серийный ватерчиллер на сегодня есть только один, это достаточно неэффективная (около 0 градусов при загрузке 50-70Вт) и дорогостоящая ($330) система от Swiftech. Голландцы OC-Shop.com обещают начать продажи своего чиллера, но за последние полгода не слишком продвинулись к цели. Известна лишь цена продукта - 600 евро, что еще больше, нежели у продукта Swifttech.
По причине отсутствия эффективных серийных чиллеров, остаются два пути - сделать самому или купить чиллер, предназначенный для другого применения.
Существует два основных вида ватерчиллеров: на основе фазового перехода (phase-change) или с использованием модулей Пельтье. Первые представляют собой двухконтурную систему, где испаритель "фреонки" охлаждает хладагент в контуре жидкостного охлаждения. Во втором случае вода или другой хладагент проходит через ватерблок, охлаждаемый модулями Пельтье. Этот вид чиллеров компактнее и проще в изготовлении, но сильно проигрывает в температурах и соотношении "эффективность/потребляемая энергия". Так, 500Вт суммарной мощности модулей дают температуру жидкости чуть ниже нуля градусов при нагрузке около 100Вт...
Итак, решено - будем делать phase-change waterchiller с тремя охлаждаемыми элементами (процессор, северный мост, ядро видеокарты).

Компоненты системы

Проще всего собирать чиллер на базе бытового конциционера. Желательно найти кондиционер, который использует газ R22, а не R134а, так как R22 испаряется при низшей температуре. Для данных целей также подходит система от холодильника. Я использовал кондиционер 5000BTU, обычно в них устанавливаются компрессоры мощностью в 1/2 л.с.

В качестве резервуара подойдет любая ёмкость с теплоизоляцией, а в крайнем случае можно сделать самому. В моем случае - это изолированный бачок для холодной воды.

Главная головная боль тех, кто рискнул заниматься экстремальным охлаждением - теплоизоляция для предотвращения конденсата. Простых методов, описанных в статье "Теплоизоляция ватерблоков" перестанет хватать, если температура приблизится к нулю и ниже. Поэтому в ход пойдет "тяжелая артиллерия". Для теплообменников - монтажная пена-заполнитель и изолента, для трубок и шлангов - поролон с закрытыми порами. Обязательно использование диэлектрической смазки для мест установки ватерблоков (также можно использовать силиконовое покрытие, но его потом невозможно удалить с плат).

Собственно компоненты системы водяного охлаждения, ватерблоки и помпа. Мой комплект состоит из PolarFlo CPU waterblock, Danger Den Z-Chip block, Swiftech MCW50 VGA block и помпы Rio Aqua 1400.

Следующий вопрос - выбор хладагента. В данном случае я руководствовался двумя параметрами: жидкость не должна замерзать при низких температурах и иметь как можно большую теплопроводность. Для низких температур подходят антифриз (кто бы сомневался;)), водка или смесь вода+метанол. Я выбрал метанол: он ядовит (внимание!), но обладает наилучшей теплопроводностью. Один из самых простых способов его достать - купить в автомагазине жидкость для стеклоочистителя.

Сборка

Здесь фотографии помогут больше, чем длительное описание на словах.

Я начал с теплоизоляции ватерблоков. Блок заливался пеной, после высыхания ставилась изоляция на трубки и всё вместе закрывалось изолентой.

Таким образом я теплоизолировал все три ватерблока.

Осталось изолировать материнскую плату. Всё пространство вокруг сокета и чипсета намазал диэлектрической смазкой, тоже самое проделал с блоками, потом сделал прокладки из поролона. Аналогичным образом обработал заднюю сторону материнки и видеокарты, затем установил поролон и закрепил пластинами из акрила.

Когда блоки были готовы, занялся кондиционером. Полностью разобрал его, стараясь ничего не сломать.

Для легкого и безболезненного сгибания трубок в нужных местах рекомендую использовать инструмент под названием "pipe bender" (не знаю точного русского названия).

Экстремальное охлаждение... Низкие и сверхнизкие температуры... Умопомрачительный разгон процессора или видеокарты.. Мировые рекорды..
Кто из оверклокеров не мечтал об этих вещах, которые когда-то были удовольствием неординарным и дорогим. Сегодня же ситуация меняется - в интернете много информации на тему самодельных систем фазового перехода, и, при наличии желания и умения создать свою, личную, пусть даже по типичной схеме, пусть не самую производительную, но намного более дешевую "фреонку" может каждый, кто действительно этого захочет. Сегодняшний материал - яркий тому пример, достойный внимания и уважения!

Структура статьи такова:

1. Введение
2. Компоненты системы
3. Сборка системы
4. Вакуумирование и заправка
5. Практическая проверка самодельной системы фазового перехода
6. Тестирование системы, анализ результатов
7. Заключение

Введение

Фреонка! Как много в этом слове (особенно для знающих людей;))!
Уже несколько лет системы фазового перехода будоражат умы оверклокеров. Это - заветная мечта любого, ведь она позволяет открыть новые, доселе неведомые горизонты разгона. Сейчас ни один новый мировой рекорд по разгону компьютерных комплектующих не обходится как минимум без применения фреонки.
Несмотря на свою долгую историю, системы охлаждения на основе фазового перехода так и не стали массовыми. Причин тому есть великое множество. Так, если говорить о самодельных вариантах, то кого-то отталкивает сложность сборки, кого-то пугает конденсат и другие сложности в процессе эксплуатации. Немаловажным сдерживающим фактором является высокая цена, ведь стоимость серийных фреонок находится у отметки «1000 у.е», что для рядового оверклокера из постсоветского пространства - немыслимые деньги за охлаждение. Самоделки же, хоть и стоят в 3-4 раза дешевле, но все равно донедавна были уделом преимущественно обеспеченных людей и истинных фанатов разгона.
В данном материале я расскажу Вам, как собрать Систему Фазового Перехода своими руками и при этом потратить сумму, эквивалентную стоимости серийной СВО.

Компоненты системы

Приступим.
Основным донором для нашей фреонки станет старый кондиционер производства Бакинского завода. Вот так он выглядит:

…а вот его технические характеристики:

В кондиционере присутствует отдельная линия для охлаждения масла:

Пробный запуск показал полную работоспособность данного девайса. За несколько минут температура на испарителе опустилась до -7С:

Компрессор

Модель БК-2000 использует самый производительный из используемых в данных кондиционерах компрессоров. Это - среднетемпературный роторный ХГрВ 2,2-У2 мощностью 1100 Вт +5С (В БК-1800 и ниже используют ХГрВ 1,75-У2). Для всех кондиционеров БК родным является газ R22. Охарактеризовать данный компрессор можно так:

1. Огромная потребляющая мощность, - при запуске в квартире иногда мигает свет. Так что включать данный девайс одновременно с утюгами/чайниками противопоказано.

2. Шум. Производителем заявлено 60 Дб. О спокойной работе в таких условиях можно и не мечтать

3. Ощутимый нагрев компрессора во время длительной работы. Из-за этого в нём организована отдельная ветка для охлаждения масла. Напомню, что для роторных и поршневых компрессором немного различаются температурный порог для безболезненной работы, так для поршневых компрессоров - он находится в пределах 60-70 , а для роторного - 150-160 С.

Конденсатор

Конденсатор оставляем родной, чтоб не возиться с переделыванием линии охлаждения масла. Испаритель же отрезаем, промываем и сушим (он нам еще пригодится для будущих проектов;)).

Фильтр-осушитель и клапаны Шредера

Покупаем самый большой фильтр, так как компрессор старый, и наверняка внутри него собралось много различного мусора. Так как мы берём по минимуму, то вполне можно обойтись одним клапаном Шредера для заправки и вакуумирования:

Испаритель

Он был изготовлен на заводе, из медного цилиндра диаметром 50 мм и высотой 60 мм. Имеет 4 этажа c лабиринтами, по центру просверлено отверстие диаметром 2,5 мм - для капилляра. К сожалению, меди не осталось, и штуцер пришлось изготовить из латуни:

Вот он в разобранном состоянии:

Труборез

Можно обойтись и без него, используя ножовку, но, увы, она оставляет много стружки и заусениц, которые могут забить капилляр. Да и с труборезом намного легче управляться, разрез аккуратнее и его можно использовать в труднодоступных местах. Поэтому я и купил самый дешевый труборез:

Сделаю акцент на одной его особенности: он имеет пластмассовую рукоятку, которая от постоянной нагрузки очень быстро лопается. У меня она долго не выдержала, и, как достойная альтернатива, была использована ручка от маминого агрегата для консервации

Поэтому если не хотите лишних хлопот – будьте бдительны, и покупайте труборезы только с металлическими ручками.

Капилляр

Самым распространённым и используемым является капилляр диаметром 0,7-0,8 мм, но, увы, купить его в моём городе оказалось непосильной задачей. Обойдя все магазины, торгующие холодильной техникой, я смог найти только 0,9 мм. Задача расчета длины капилляра всегда индивидуальна, обычно для этого используют таблицу Гарри Ллойда, но, увы, в ней присутствуют только капилляры с диаметром 0,7 и 0,8 мм. Обратившись со своей проблемой в ветку «Немного экстрима или фреонка своими руками - 2» на форуме overclockers.ru, я получил в своё распоряжение программу "hlad 0.3.1", с помощью которой можно рассчитать необходимую длину капилляра.
Так как в базе данных моего компрессора нет, то основные данные были введены вручную. За объем прокачиваемого газа было взято 2,2 м3/ч. При температуре конденсации 50, и температуре кипения -30 градусов длина капилляра составила 4,1 м.

Отсасывающая трубка

Рассмотрим все возможные её вариации:

1. Медная трубка. Самый дешевый и надёжный вариант. Но есть один существенный минус - из-за плохой гибкости с ней трудно обеспечить хороший прижим испарителя к процессору.

2. Металлический заправочный шланг REFCO , идеальный вариант. Hесмотря на дороговизну, его преимущества налицо. Очень гибкий, длинный, удобный. Но найти его в продаже даже в Москве - задача весьма серьезная.

3. Желтый газовый шланг . Очень схож по свойствам с заправочным REFCO, это делает его выбором номер 2. Но имеет один существенный недостаток, - при минусовых температурах длина увеличивается на 20-30%.

4. Медная гофрированная трубка , используется при установке кондиционеров, ею заменяют медные трубки в местах крутых изгибов, где медь попросту ломается.

Самым доступным по цене является последний вариант. Найти эту трубку можно в магазинах, которые торгуют газовым либо холодильным оборудованием.

Горелка

Это, пожалуй, самый дорогой и важный инструмент, участвующий в нашей сборке. От неё зависит качество пайки и состояние нервной системы того, кто самостоятельно делает систему фазового перехода. Исходя из финансовой стороны Вашего проекта, можно из нижеприведенного списка выбрать агрегат себе по карману.

1. МАПП газ и горелка под него. Имеет температуру горения 1300 градусов цельсия, обладает достаточной мощностью для пайки трубок. Спаять испаритель им тоже возможно, но для этого объект пайки потребуется дополнительно разогревать на плите.
Цена:
горелка – в среднем 35 у.е, баллон – 12 у.е

2. Турбо-пропан. Состоит из специальной горелки и пропанового баллона. Неплохой вариант, имеет достаточную температуру горения для прогрева испарителя, но если испаритель достаточно массивный, опять же придется прибегнуть к помощи плиты. Цена горелки порядка 40 у.е.

3. Пропан-кислород.
Вот этой действительно «выбор джедая». С помощью этой горелки вы сможете паять всё - от ювелирной пайки маленьких деталей и швов до тяжелых и габаритных испарителей, конденсаторов и т.д.

Здесь я решил не экономить и взять по максимуму. Осмотр цен на готовые пропано-кислородные системы поверг меня в шок, за переносную горелку с пропановым баллоном на 5 л и 1 л кислородным, требовали от 120 до 140 у.е. Единственный выход - собирать самому по деталям. На барахолке были куплены: баллон от сжатого воздуха (6 у.е) на 1 литр, и 5-тилитровый пропановый (8 у.е). Баллон для сжатого воздуха был доставлен на заправочную станцию, где его освидетельствовали, перекрасили и заправили. Горелку я купил новую, из-за мизерной разницы в цене между б/у (10 у.е) и этой (14 у.е). Новый кислородный редуктор затянул на 18 у.е, а пропановый на 4 у.е. Ну и в довесок ко всему этому пришлось взять по 2 метра шлангов. В итоге получилась вот такая горелочка, общей стоимостью 50 у.е.:

Трубки

Изначально я не знал, трубки какого именно диаметра мне понадобятся, поэтому про запас взял по метру 6 мм, 8 мм, 10 мм и 12 мм:

Изоляция

Трубчатая изоляция представлена в любом магазине в широком ассортименте, а вот с листовой (для изоляция материнской платы) всё намного хуже. Купить её у нас в основном можно только заранее заказав, примерно по таким расценкам: за 1 квадратный метр толщиной 10 мм просят 16 у.е., а за столько же толщиной 25 мм - 34 у.е.
Поэтому было приобретено 2 метра обычного круглого K-Flex (15 мм - внутренний, 36 мм - внешний) для изоляции трубок:

А для изоляции материнской платы я купил трубчатую, но большого диаметра (10 см), и с толщиной стенки 15 мм. Преимущество её в том, что стенки тут достаточно толстые, и при разрезе из неё получается превосходная плоская изоляция:

Фреон

Для заправки системы у холодильщиков был куплен один литровый баллон фреона Р-22.

Заправочный шланг, манометры

Так как манометрическую станцию я не могу себе позволить, придется ограничиться заправочным шлангом.

Припой

Все детали в системе паялись 5% Харрисом. 3-х прутков с лихвой хватит для спайки всего контура и испарителя.

Сборка системы

Сперва я решил спаять испаритель. Так как это - один из важнейших элементов системы, то качество его пайки должно быть на высоте. За несколько минут горелка разогрела испаритель докрасна, и я нежно прошёлся прутком по соединениям. Припой очень быстро и легко заполнял все стыки, расползаясь по сторонам и порывая весь испаритель.
Чтобы проверить качество пайки, нужно опрессовать испаритель. Для этого впаиваем в него клапан Шредера (предварительно не забудьте выкрутить ниппель), надуваем фреоном и опускаем в ведро с водой. С первого же раза всё спаялось удачно и течей обнаружено не было.

После пайки на меди образуется толстый слой окалины, и не только снаружи, но и внутри, поэтому для безотказной работы его необходимо удалить.

Сделать это можно несколькими способами:

1. Промыть испаритель в концентрированной соляной или азотной кислоте.
2. Проварить испаритель в Coca-Cola.
3. Проварить его в растворе уксусной кислоты.

Вот так выглядел мой испариетль сразу после пайки...

А вот так - уже после процедуры очистки:

Через полчаса испаритель был чист, и я приступил к пайке отсасывающей трубки. Капилляр установился достаточно плотно, и я отрегулировал его так, чтобы он не доставал до дна 5-6 мм, и начал припаивать отсасывающую трубку. Правда, штуцер был из латуни, поэтому припой не «натекал» не него, и мне пришлось опять идти к холодильщикам, на этот раз за флюсом. С ним всё пошло как по маслу:

Пайка остальных деталей прошла быстро и без эксцессов.

Учтите, что фильтр нужно располагать под углом, чтобы фреон лучше стекал. Когда всё уже спаяно, полезно проверить систему на течи. Для этого заправляем ее небольшим количеством фреона и промазываем всё стыки мыльным раствором. Для большей надёжности я оставил систему с фреоном на двое суток. Через указанное время было установлено, что фреон всё еще был внутри и выходил с одинаковой интенсивностью.

Из-за горячего нрава данного компрессора для его охлаждения я решил использовать высокооборотистые советские вентиляторы типа ВН-2 общим количеством 4 штуки:

Одна пара втягивала воздух через конденсатор, другая же наоборот продувала его:

Вакуумирование и заправка

В домашних условиях самым доступным способом вакуумирования является использование в качестве вакуумного насоса старого компрессора. Но, увы, такового у меня не оказалось, поэтому я опять обратился к холодильщикам, и они с помощью вакуумного насоса REFCO за несколько минут откачали весь воздух из системы до глубокого вакуума.
Из-за большого размера конденсатора и наличия в системе ресивера, объем закачиваемого фреона достаточно велик (порядка 1 кг). В обычных фреонках этот число колеблется в переделах 300-400 грамм.
Ну что же - включаем систему, подсоединяем заправочный шланг, приоткрывая кран на баллоне на 4-6 секунд. После каждой «порции» подачи газа ждём 3-5 минут, и снова добавляем фреона. Когда испаритель начнет обмерзать, добавляем еще немного и прекращаем заправку.
Через 10-15 минут на испарителе у меня начала появляется иней, уже к 30 минуте отсасывающая трубка промерзла на 10-15 см от испарителя, а температура опустилась до «-47».

Что ж, отличный результат! Посмотрим, что будет с изоляцией. Заизолировать отсасывающую трубку особого труда не вызвало.

Включаем… и система за 15 минут выходит на -67!

Потрясающий результат. Правда, мы должны учесть несколько факторов.

1. Для работы под нагрузкой придется добавить фреона, соответственно температура повысится.
2. Мультиметр в роли термометра далеко не лучший вариант, уже после -50 он начинает местами неплохо врать, поэтому о реальной температуре мы может только догадываться. Но сам факт достижения значения «-67» очень греет душу.

Практическая проверка самодельной системы фазового перехода

Этап подготовительный - изоляция материнской платы

К изоляции материнской платы нужно подойти со всей ответственностью, ведь даже маленькая капля конденсата может привести к нестабильности в работе, а иногда и к выходу системы из строя.
Аккуратно замеряем расположение конденсаторов и прочих элементов на плате, и вырезаем под них отверстия в изоляции (в качестве последней используем разрезанную трубчатую изоляцию, о которой говорилось выше).
Вот фото прижимной пластины из оргстекла, для плотного прилегания изоляции по всей площади контакта с материнской платой:

Для изоляции околосокетной зоны не использовалась никакая диэлектрическая смазка – это оказалось ненужным, ведь у меня и так получилась стабильно работающая система.

Конденсаторы тоже были заизолированы, ведь они находятся очень близко к процессорному разъему. Из-за установленного испарителя во время работы они довольно «неплохо» промерзали и покрывались инеем.

Крепление для испарителя было сделано из 15 мм фанеры, так как она, в отличие от оргстекла, спокойно держит температуры порядка -50 градусов Цельсия и ниже, тогда как 15 мм оргстекло в таких условиях промерзает насквозь.

Дальнейшая проверка включенной системы показала полное отсутствие конденсата.

Испытание на железе

Из-за жесткости отсасывающей трубки было потрачено два дня на доработку крепления, так как изначально не было плотного контакта испарителя и процессора. После долгих мучений у меня всё-таки получилось обеспечить нормальный прижим испарителя к процессору.

Не смотря на то, что основание испарителя отшлифовано «на коленке» с помощью пасты ГОИ и мелкой наждачной бумаги, как видите, добиться зеркального отражения довольно легко.
Для обдува околосокетной зоны и перестраховки против возникновения конденсата использовался агрессивный 120-мм вентилятор:

Сначала меня немного беспокоила вибрация, которая отчетливо передавалась во все стороны по полу на расстоянии 3-х метров от собранной системы, ну и, конечно, немного трясло испаритель. Правда, на стабильность это ни коим образом не повлияло, поэтому испытания проходили в режиме «чем богаты, тем и рады».

Ну что же нам делать с системой фазового перехода? Конечно, применять для разгона компонентов системы! Теперь стабильной для процессора стала частота 3050Мгц:

Вот так выглядела собранная система в рабочем состоянии, на фото – меряем датчиком температуру испарителя при проходе 3DMark01:

В тестах типа 3DMark01, SuperPI, SienceMark, RenderBench и так далее температура испарителя держалась в пределах -35 градусов, при более тяжелых нагрузках (типа s&m) она поднималась примерно до нуля.

Процессор попался средненький, поэтому из него получилось выжать только Russian Record (WR равен 3207Мгц). А жаль, ведь до мирового не хватило всего 29 МГц! 3178 МГц - предельная частота для моего процессора, при которой сохранялась какая-то стабильность в данных условиях:

Тестирование системы, анализ результатов

Конфигурация тестового стенда:

  • Процессор: АMD Athlon 64 3000+, 2.0 GHz, 1.40 V, 512 Kb (Venice, E6);
  • Материнская плата: DFI LP UT nForce3 250Gb;
  • Подводя итог по тестовой части, следует отметить вполне закономерный рост производительности системы в зависимости от частоты центрального процессора, который можно изобразить с помощью линейного графика.
    Может, для повседневного использования именно с этой фреонкой именно этой системы не так и много, но в бенчерских целях ничего лучше не придумаешь!

    Заключение

    Для начала - подведем итоги по стоимости самодельной системы фазового перехода в моем случае:

    • кондиционер - 30 у.е
    • фильтр - 3 у.е
    • клапан Шредера - 1 у.е
    • испаритель - 15 у.е
    • труборез - 6 у.е
    • капилляр - 8 у.е
    • трубки - 8 у.е
    • горелка - 50 у.е
    • заправочный шланг – 8 у.е
    • фреон - 6 у.е
    • изоляция - 8 у.е
    • припой - 3 у.е

    всего: 144 у.е.

    Фактически за сумму, равную стоимости хорошей покупной системы водяного охлаждения, можно получить отличный инструмент, который намного больше, нежели СВО, поможет любому оверклокеру в битве за рекорды.
    Правда, есть у медали и вторая сторона.

    Для комплексной оценки проведенной работы и полученного результата можно выделить следующие основные моменты:

    плюсы -

    • дешевизна;
    • возможность получать сверхнизкие температуры на процессоре, благодаря чему достичь новых высот при разгоне;
    • моральное удовлетворение от проделанной работы;)

    минусы -

    • огромное энергопотребление;
    • большое тепловыделение (правда, зимой этот минус превратится в неплохой плюс:));
    • вибрация всей системы в целом и испарителя в частности (присутствует в конкретном случае только из-за особенностей примененного компрессора);
    • слишком большой для нормальной работы шум системы.

    Да, эту систему фазового перехода из-за перечисленных отрицательных черт нельзя использовать при работе за компьютером на протяжении длительного времени. Тем не менее, результатом лично я остался очень доволен - масса удовольствия от процесса работы и результата и возможность поработать на экстремальных частотах этого стоят!
    Ну и не стоит забывать, что это - первый опыт в построении самодельной фреонки, который, безусловно, удался!

    Желаю всем удачи и низких температур!

    У Вас есть пожелания, критические замечания по данному материалу? Его обсуждение ведется .


Часто для построения большого радиатора используют тепловые трубки (англ.: heat pipe ) — герметично запаянные и специальным образом устроенные металлические трубки (обычно медные). Они очень эффективно переносят тепло от одного своего конца к другому: таким образом, даже самые дальние рёбра большого радиатора эффективно работают в охлаждении. Так, например, устроен популярный кулер

Для охлаждения современных производительных графических процессоров применяют те же методы: большие радиаторы, медные сердечники систем охлаждения или полностью медные радиаторы, тепловые трубки для переноса тепла к дополнительным радиаторам:

Рекомендации по выбору здесь такие же: использовать медленные и крупноразмерные вентиляторы, максимально большие радиаторы. Так, например, выглядят популярные системы охлаждения видеокарт и Zalman VF900 :

Обычно вентиляторы систем охлаждения видеокарт лишь перемешивали воздух внутри системного блока, что не очень эффективно, с точки зрения охлаждения всего компьютера. Лишь совсем недавно для охлаждения видеокарт стали применять системы охлаждения, которые выносят горячий воздух за пределы корпуса: первыми стали и, схожая конструкция, от бренда :

Подобные системы охлаждения устанавливаются на самые мощные современные видеокарты (nVidia GeForce 8800, ATI x1800XT и старше). Такая конструкция зачастую более оправдана, с точки зрения правильной организации воздушных потоков внутри корпуса компьютера, чем традиционные схемы. Организация воздушных потоков

Современные стандарты по конструированию корпусов компьютеров среди прочего регламентируют и способ построения системы охлаждения. Начиная ещё с , выпуск которых был начат в 1997 году, внедряется технология охлаждения компьютера сквозным воздушным потоком, направленным от передней стенки корпуса к задней (дополнительно воздух для охлаждения всасывается через левую стенку):

Интересующихся подробностями отсылаю к последним версиям стандарта ATX.

Как минимум один вентилятор установлен в блоке питания компьютера (многие современные модели имеют два вентилятора, что позволяет существенно снизить скорость вращения каждого из них, а, значит, и шум при работе). В любом месте внутри корпуса компьютера можно устанавливать дополнительные вентиляторы для усиления потоков воздуха. Обязательно нужно следовать правилу: на передней и левой боковой стенке воздух нагнетается внутрь корпуса, на задней стенке горячий воздух выбрасывается наружу . Также нужно проконтролировать, чтобы поток горячего воздуха от задней стенки компьютера не попадал напрямик в воздухозабор на левой стенке компьютера (такое случается при определённых положениях системного блока относительно стен комнаты и мебели). Какие вентиляторы устанавливать, зависит в первую очередь от наличия соответствующих креплений в стенках корпуса. Шум вентилятора главным образом определяется скоростью его вращения (см. раздел ), поэтому рекомендуется использовать медленные (тихие) модели вентиляторов. При равных установочных размерах и скорости вращения, вентиляторы на задней стенке корпуса субъективно шумят несколько меньше передних: во-первых, они находятся дальше от пользователя, во-вторых, сзади корпуса расположены почти прозрачные решётки, в то время как спереди - различные декоративные элементы. Часто шум создаётся вследствие огибания элементов передней панели воздушным потоком: если переносимый объём воздушного потока превышает некий предел, на передней панели корпуса компьютера образуются вихревые турбулентные потоки, которые создают характерный шум (он напоминает шипение пылесоса, но гораздо тише).

Выбор компьютерного корпуса

Практически подавляющее большинство корпусов для компьютеров, представленных сегодня на рынке, соответствуют одной из версий стандарта ATX, в том числе и по части охлаждения. Самые дешёвые корпуса не комплектуются ни блоком питания, ни дополнительными приспособлениями. Более дорогие корпуса оснащаются вентиляторами для охлаждения корпуса, реже - переходниками для подключения вентиляторов различными способами; иногда даже специальным контроллером, оснащённым термодатчиками, который позволяет плавно регулировать скорость вращения одного или нескольких вентиляторов в зависимости от температуры основных узлов (см. напр. ). Блок питания включается в комплект не всегда: многие покупатели предпочитают выбирать БП самостоятельно. Из прочих вариантов дополнительного оснащения стоит отметить специальные крепления боковых стенок, жёстких дисков, оптических приводов, карт расширения, которые позволяют собирать компьютер без отвёртки; пылевые фильтры, препятствующие попаданию грязи внутрь компьютера через вентиляционные отверстия; различные патрубки для направления воздушных потоков внутри корпуса. Исследуем вентилятор

Для переноса воздуха в системах охлаждения используют вентиляторы (англ.: fan ).

Устройство вентилятора

Вентилятор состоит из корпуса (обычно в виде рамки), электродвигателя и крыльчатки, закреплённой при помощи подшипников на одной оси с двигателем:

От типа установленных подшипников зависит надёжность вентилятора. Производители заявляют такое типичное время наработки на отказ (количество лет получено из расчёта круглосуточной работы):

С учётом морального старения компьютерной техники (для домашнего и офисного применения это 2-3 года), вентиляторы с шарикоподшипниками можно считать «вечными»: срок их работы не меньше типового срока работы компьютера. Для более серьёзных применений, где компьютер должен работать круглосуточно много лет, стоит подобрать более надёжные вентиляторы.

Многие сталкивались со старыми вентиляторами, в которых подшипники скольжения выработали свой ресурс: вал крыльчатки дребезжит и вибрирует при работе, издавая характерный рычащий звук. В принципе, такой подшипник можно отремонтировать, смазав его твёрдой смазкой, - но многие ли согласятся ремонтировать вентилятор, цена которому всего пара долларов?

Характеристики вентиляторов

Вентиляторы различаются по своему размеру и толщине: обычно в компьютерах встречаются типоразмеры 40×40×10 мм, для охлаждения видеокарт и карманов для жёстких дисков, а также 80×80×25, 92×92×25, 120×120×25 мм для охлаждения корпуса. Также вентиляторы различаются типом и конструкцией устанавливаемых электродвигателей: они потребляют различный ток и обеспечивают разную скорость вращения крыльчатки. От размеров вентилятора и скорости вращения лопастей крыльчатки зависит производительность: создаваемое статическое давление и максимальный объём переносимого воздуха.

Объём переносимого вентилятором воздуха (расход) измеряется в кубометрах в минуту или кубических футах в минуту (CFM, cubic feet per minute). Производительность вентилятора, указанная в характеристиках, измеряется при нулевом давлении: вентилятор работает в открытом пространстве. Внутри корпуса компьютера вентилятор дует в системный блок определенного размера, потому он создаёт в обслуживаемом объёме избыточное давление. Естественно, что объёмная производительность будет приблизительно обратно пропорциональна создаваемому давлению. Конкретный вид расходной характеристики зависит от формы использованной крыльчатки и других параметров конкретной модели. Например, соответствующий график для вентилятора :

Из этого следует простой вывод: чем интенсивнее работают вентиляторы в задней части корпуса компьютера, тем больше воздуха можно будет прокачать через всю систему, и тем эффективнее будет охлаждение.

Уровень шума вентиляторов

Уровень шума, создаваемый вентилятором при работе, зависит от различных его характеристик (подробнее о причинах его возникновения можно прочесть в статье ). Несложно установить зависимость между производительностью и шумом вентилятора. На сайте крупного производителя популярных систем охлаждения , в мы видим: многие вентиляторы одного и того же размера комплектуются разными электродвигателями, которые рассчитаны на различную скорость вращения. Поскольку крыльчатка используется одна и та же, получаем интересующие нас данные: характеристики одного и того же вентилятора при разных скоростях вращения. Составляем таблицу для трёх самых распространённых типоразмеров: толщина 25 мм, и .

Жирным шрифтом выделены самые популярные типы вентиляторов.

Посчитав коэффициент пропорциональности потока воздуха и уровня шума к оборотам, видим почти полное совпадение. Для очистки совести считаем отклонения от среднего: меньше 5%. Таким образом, мы получили три линейные зависимости, по 5 точек каждая. Не Бог весть, какая статистика, но для линейной зависимости этого достаточно: гипотезу считаем подтверждённой.

Объёмная производительность вентилятора пропорциональна количеству оборотов крыльчатки, то же самое справедливо и для уровня шума .

Используя полученную гипотезу, мы можем экстраполировать полученные результаты методом наименьших квадратов (МНК): в таблице эти значения выделены наклонным шрифтом. Нужно, однако, помнить: область применения этой модели ограничена. Исследованная зависимость линейна в некотором диапазоне скоростей вращения; логично предположить, что линейный характер зависимости сохранится и в некоторой окрестности этого диапазона; но при очень больших и очень малых оборотах картина может существенно измениться.

Теперь рассмотрим линейку вентиляторов другого производителя: , и . Составим аналогичную табличку:

Наклонным шрифтом выделены расчётные данные.
Как было сказано выше, при значениях скорости вращения вентилятора, существенно отличающихся от исследованных, линейная модель может быть неверна. Полученные экстраполяцией значения следует понимать как приблизительную оценку.

Обратим внимание на два обстоятельства. Во-первых, вентиляторы GlacialTech работают медленнее, во-вторых, - эффективнее. Очевидно, это результат использования крыльчатки с более сложной формой лопастей: даже при одинаковых оборотах, вентилятор GlacialTech переносит больше воздуха, чем Titan: см. графу прирост . А уровень шума при одинаковых оборотах примерно равен : пропорция соблюдается даже для вентиляторов разных производителей с различной формой крыльчатки.

Нужно понимать, что реальные шумовые характеристики вентилятора зависят от его технической конструкции, создаваемого давления, объёма прокачиваемого воздуха, от типа и формы преград на пути воздушных потоков; то есть, от типа корпуса компьютера. Поскольку корпуса используются самые разные, невозможно напрямую применять измеренные в идеальных условиях количественные характеристики вентиляторов — их можно только сравнивать между собой для разных моделей вентиляторов.

Ценовые категории вентиляторов

Рассмотрим фактор стоимости. Для примера возьмём в одном и том же интернет-магазине и : результаты вписаны в приведённых выше таблицах (рассматривались вентиляторы с двумя шарикоподшипниками). Как видно, вентиляторы этих двух производителей принадлежат к двум разным классам: GlacialTech работают на более низких оборотах, потому меньше шумят; при одинаковых оборотах они эффективнее Titan - но они всегда дороже на доллар-другой. Если нужно собрать наименее шумную систему охлаждения (например, для домашнего компьютера), придётся раскошелиться на более дорогие вентиляторы со сложной формой лопастей. При отсутствии таких строгих требований или при ограниченном бюджете (например, для офисного компьютера), вполне подойдут и более простые вентиляторы. Различный тип подвеса крыльчатки, используемый в вентиляторах (подробнее см. раздел ), также влияет на стоимость: вентилятор тем дороже, чем более сложные подшипники используются.

Ключом разъёма служат скошенные углы с одной из сторон. Провода подключены следующим образом: два центральных - «земля», общий контакт (чёрный провод); +5 В - красный, +12 В - жёлтый. Для питания вентилятора через молекс-разъём используются только два провода, обычно чёрный («земля») и красный (напряжение питания). Подключая их к разным контактам разъёма, можно получить различную скорость вращения вентилятора. Стандартное напряжение в 12 В запустит вентилятор со штатной скоростью, напряжение в 5-7 В обеспечивает примерно половинную скорость вращения. Предпочтительно использовать более высокое напряжение, так как не каждый электромотор в состоянии надёжно запускаться при чересчур низком напряжении питания.

Как показывает опыт, скорость вращения вентилятора при подключении к +5 В, +6 В и +7 В примерно одинакова (с точностью до 10%, что сравнимо с точностью измерений: скорость вращения постоянно изменяется и зависит от множества факторов, вроде температуры воздуха, малейшего сквозняка в комнате и т. п.)

Напоминаю, что производитель гарантирует стабильную работу своих устройств только при использовании стандартного напряжения питания . Но, как показывает практика, подавляющее большинство вентиляторов отлично запускаются и при пониженном напряжении.

Контакты зафиксированы в пластмассовой части разъёма при помощи пары отгибающихся металлических «усиков». Не составляет труда извлечь контакт, придавив выступающие части тонким шилом или маленькой отвёрткой. После этого «усики» нужно опять разогнуть в стороны, и вставить контакт в соответствующее гнездо пластмассовой части разъёма:

Иногда кулеры и вентиляторы оборудуются двумя разъёмами: подключёнными параллельно молекс- и трёх- (или четырёх-) контактным. В таком случае подключать питание нужно только через один из них :

В некоторых случаях используется не один молекс-разъём, а пара «мама-папа»: так можно подключить вентилятор к тому же проводу от блока питания, который запитывает жёсткий диск или оптический привод. Если вы переставляете контакты в разъёме, чтобы получить на вентиляторе нестандартное напряжение, обратите особое внимание на то, чтобы переставить контакты во втором разъёме в точности таком же порядке . Невыполнение этого требования чревато подачей неверного напряжения питания на жёсткий диск или оптический привод, что наверняка приведёт к их мгновенному выходу из строя.

В трёхконтактных разъёмах ключом для установки служит пара выступающих направляющих с одной стороны:

Ответная часть находится на контактной площадке, при подключении она входит между направляющими, также выполняя роль фиксатора. Соответствующие разъёмы для питания вентиляторов находятся на материнской плате (как правило, несколько штук в разных местах платы) или на плате специального контроллера, управляющего вентиляторами:

Помимо «земли» (чёрный провод) и +12 В (обычно красный, реже: жёлтый), есть ещё тахометрический контакт: он используется для контроля скорости вращения вентилятора (белый, синий, жёлтый или зелёный провод). Если вам не нужна возможность контроля над оборотами вентилятора, то этот контакт можно не подключать. Если питание вентилятора подведено отдельно (например, через молекс-разъём), допустимо при помощи трёхконтактного разъёма подключить только контакт контроля за оборотами и общий провод - такая схема часто используется для мониторинга скорости вращения вентилятора блока питания, который запитывается и управляется внутренними схемами БП.

Четырёхконтактные разъёмы появились сравнительно недавно на материнских платах с процессорными разъёмами LGA 775 и socket AM2. Отличаются они наличием дополнительного четвёртого контакта, при этом полностью механически и электрически совместимы с трёхконтактными разъёмами:

Два одинаковых вентилятора с трёхконтактными разъёмами можно подключить последовательно к одному разъёму питания. Таким образом, на каждый из электромоторов будет приходится по 6 В питающего напряжения, оба вентилятора будут вращаться с половинной скоростью. Для такого соединения удобно использовать разъёмы питания вентиляторов: контакты легко извлечь из пластмассового корпуса, придавив фиксирующий «язычок» отвёрткой. Схема подключения приведена на рисунке далее. Один из разъёмов подключается к материнской плате, как обычно: он будет обеспечивать питанием оба вентилятора. Во втором разъёме при помощи кусочка проволоки нужно закоротить два контакта, после чего заизолировать его скотчем или изолентой:

Настоятельно не рекомендуется соединять таким способом два разных электромотора : из-за неравенства электрических характеристик в различных режимах работы (запуск, разгон, стабильное вращение) один из вентиляторов может не запускаться вовсе (что чревато выходом электромотора из строя) или требовать для запуска чрезмерно большой ток (чревато выходом из строя управляющих цепей).

Часто для ограничения скорости вращения вентилятора примеряются постоянные или переменные резисторы, включенные последовательно в цепи питания. Изменяя сопротивление переменного резистора, можно регулировать скорость вращения: именно так устроены многие ручные регуляторы скорости вентиляторов. Конструируя подобную схему нужно помнить, что, во-первых, резисторы греются, рассеивая часть электрической мощности в виде тепла, - это не способствует более эффективному охлаждению; во-вторых, электрические характеристики электродвигателя в различных режимах работы (запуск, разгон, стабильное вращение) не одинаковы, параметры резистора нужно подбирать с учётом всех этих режимов. Чтобы подобрать параметры резистора, достаточно знать закон Ома; использовать нужно резисторы, рассчитанные на ток, не меньший, чем потребляет электродвигатель. Однако лично я не приветствую ручное управление охлаждением, так как считаю, что компьютер - вполне подходящее устройство, чтобы управлять системой охлаждения автоматически, без вмешательства пользователя.

Контроль и управление вентиляторами

Большинство современных материнских плат позволяет контролировать скорость вращения вентиляторов, подключённых к некоторым трёх- или четырёхконтактным разъёмам. Более того, некоторые из разъёмов поддерживают программное управление скоростью вращения подключённого вентилятора. Не все размещённые на плате разъёмы предоставляют такие возможности: например, на популярной плате Asus A8N-E есть пять разъёмов для питания вентиляторов, контроль над скоростью вращения поддерживают только три из них (CPU, CHIP, CHA1), а управление скоростью вентилятора - только один (CPU); материнская плата Asus P5B имеет четыре разъёма, все четыре поддерживают контроль за скоростью вращения, управление скоростью вращения имеет два канала: CPU, CASE1/2 (скорость двух корпусных вентиляторов изменяется синхронно). Количество разъёмов с возможностями контроля или управления скоростью вращения зависит не от используемого чипсета или южного моста, а от конкретной модели материнской платы: модели разных производителей могут различаться в этом отношении. Часто разработчики плат намеренно лишают более дешёвые модели возможностей управления скоростью вентиляторов. Например, материнская плата для процессоров Intel Pentiun 4 Asus P4P800 SE способна регулировать обороты кулера процессора, а её удешевлённый вариант Asus P4P800-X - нет. В таком случае можно использовать специальные устройства, которые способны управлять скоростью нескольких вентиляторов (и, обычно, предусматривают подключение целого ряда температурных датчиков) - их появляется всё больше на современном рынке.

Контролировать значения скорости вращения вентиляторов можно при помощи BIOS Setup. Как правило, если материнская плата поддерживает изменение скорости вращения вентиляторов, здесь же в BIOS Setup можно настроить параметры алгоритма регулирования скорости. Набор параметров различен для разных материнских плат; обычно алгоритм использует показания термодатчиков, встроенных в процессор и материнскую плату. Существует ряд программ для различных ОС, которые позволяют контролировать и регулировать скорость вентиляторов, а также следить за температурой различных компонентов внутри компьютера. Производители некоторых материнских плат комплектуют свои изделия фирменными программами для Windows: Asus PC Probe, MSI CoreCenter, Abit µGuru, Gigabyte EasyTune, Foxconn SuperStep и т.д. Распространено несколько универсальных программ, среди них: (shareware, $20-30), (распространяется бесплатно, не обновляется с 2004 года). Самая популярная программа этого класса - :

Эти программы позволяют следить за целым рядом температурных датчиков, которые устанавливаются в современные процессоры, материнские платы, видеокарты и жёсткие диски. Также программа отслеживает скорость вращения вентиляторов, которые подключены к разъёмам материнской платы с соответствующей поддержкой. Наконец, программа способна автоматически регулировать скорость вентиляторов в зависимости от температуры наблюдаемых объектов (если производитель системной платы реализовал аппаратную поддержку этой возможности). На приведённом выше рисунке программа настроена на управление только вентилятором процессора: при невысокой температуре ЦП (36°C) он вращается со скоростью около 1000 об/мин, - это 35% от максимальной скорости (2800 об/мин). Настройка таких программ сводится к трём шагам:

  1. определению, к каким из каналов контроллера материнской платы подключены вентиляторы, и какие из них могут управляться программно;
  2. указанию, какие из температур должны влиять на скорость различных вентиляторов;
  3. заданию температурных порогов для каждого датчика температуры и диапазона рабочих скоростей для вентиляторов.

Возможностями по мониторингу также обладают многие программы для тестирования и тонкой настройки компьютеров: , и т. д.

Многие современные видеокарты также позволяют регулировать обороты вентилятора системы охлаждения в зависимости от нагрева графического процессора. При помощи специальных программ можно даже изменять настройки механизма охлаждения, снижая уровень шума от видеокарты в отсутствие нагрузки. Так выглядят в программе оптимальные настройки для видеокарты HIS X800GTO IceQ II :

Пассивное охлаждение

Пассивными системами охлаждения принято называть такие, которые не содержат вентиляторов. Пассивным охлаждением могут довольствоваться отдельные компоненты компьютера, при условии, что их радиаторы помещены в достаточный поток воздуха, создаваемый «чужими» вентиляторами: например, микросхема чипсета часто охлаждается большим радиатором, расположенным вблизи места установки процессорного кулера. Популярны также пассивные системы охлаждения видеокарт, например, :

Очевидно, чем больше радиаторов приходится продувать одному вентилятору, тем большее сопротивление потоку ему нужно преодолеть; таким образом, при увеличении количества радиаторов часто приходится увеличивать скорость вращения крыльчатки. Эффективнее использовать много тихоходных вентиляторов большого диаметра, а пассивные системы охлаждения предпочтительнее избегать. Несмотря на то, что выпускаются пассивные радиаторы для процессоров, видеокарты с пассивным охлаждением, даже блоки питания без вентиляторов (FSP Zen), попытка собрать компьютер совсем без вентиляторов из всех этих компонент наверняка приведёт к постоянным перегревам. Потому, что современный высокопроизводительный компьютер рассеивает слишком много тепла, чтобы охлаждаться только лишь пассивными системами. Из-за низкой теплопроводности воздуха, сложно организовать эффективное пассивное охлаждение для всего компьютера, разве что превратить в радиатор весь корпус компьютера, как это сделано в :

Сравните корпус-радиатор на фото с корпусом обычного компьютера!

Возможно, полностью пассивного охлаждения будет достаточно для маломощных специализированных компьютеров (для доступа в интернет, для прослушивания музыки и просмотра видео, и т.п.) Охлаждение экономией

В старые времена, когда энергопотребление процессоров не достигло ещё критических величин - для их охлаждения хватало небольшого радиатора - вопрос «что будет делать компьютер, когда делать ничего не нужно?» решался просто: пока не надо выполнять команды пользователя или запущенные программы, ОС даёт процессору команду NOP (No OPeration, нет операции). Эта команда заставляет процессор выполнить бессмысленную безрезультатную операцию, результат которой игнорируется. На это тратится не только время, но и электроэнергия, которая, в свою очередь, преобразуется в тепло. Типичный домашний или офисный компьютер в отсутствие ресурсоёмких задач загружен, как правило, всего на 10% - любой может удостовериться в этом, запустив Диспетчер задач Windows и понаблюдав за Хронологией загрузки ЦП (Центрального Процессора). Таким образом, при старом подходе около 90% процессорного времени улетало на ветер: ЦП занимался выполнением никому не нужных команд. Более новые ОС (Windows 2000 и далее) в аналогичной ситуации поступают разумнее: при помощи команды HLT (Halt, останов) процессор полностью останавливается на короткое время - это, очевидно, позволяет снизить потребление энергии и температуру процессора при отсутствии ресурсоёмких задач.

Компьютерщики со стажем могут припомнить целый ряд программ для «программного охлаждения процессора»: будучи запущенными под управлением Windows 95/98/ME они останавливали процессор с помощью HLT, вместо повторения бессмысленных NOP, чем снижали температуру процессора в отсутствие вычислительных задач. Соответственно, использование таких программ под управлением Windows 2000 и более новых ОС лишено всякого смысла.

Современные процессоры потребляют настолько много энергии (а это значит: рассеивают её в виде тепла, то есть греются), что разработчики создали дополнительные технические по борьбе с возможным перегревом, а также средства, повышающие эффективность механизмов экономии при простое компьютера.

Тепловая защита процессора

Для защиты процессора от перегрева и выхода из строя, применяется так называемый thermal throttling (обычно не переводят: троттлинг). Суть этого механизма проста: если температура процессора превышает допустимую, процессор принудительно останавливается командой HLT, чтобы кристалл имел возможность остыть. В ранних реализациях этого механизма через BIOS Setup можно было настраивать, какую долю времени процессор будет простаивать (параметр CPU Throttling Duty Cycle: xx%); новые реализации «тормозят» процессор автоматически до тех пор, пока температура кристалла не опустится до допустимого уровня. Безусловно, пользователь заинтересован в том, чтобы процессор не прохлаждался (буквально!), а выполнял полезную работу — для этого нужно использовать достаточно эффективную систему охлаждения. Проверить, не включается ли механизм тепловой защиты процессора (троттлинга) можно при помощи специальных утилит, например :

Минимизация потребления энергии

Практически все современные процессоры поддерживают специальные технологии для снижения потребления энергии (и, соответственно, нагрева). Разные производители называют такие технологии по-разному, например: Enhanced Intel SpeedStep Technology (EIST), AMD Cool’n’Quiet (CnQ, C&Q) - но работают они, по сути, одинаково. Когда компьютер простаивает, и процессор не загружен вычислительными задачами, уменьшается тактовая частота и напряжение питания процессора. И то, и другое уменьшает потребление процессором электроэнергии, что, в свою очередь, сокращает тепловыделение. Как только загрузка процессора увеличивается, автоматически восстанавливается полная скорость процессора: работа такой схемы энергосбережения полностью прозрачна для пользователя и запускаемых программ. Для включения такой системы нужно:

  1. включить использование поддерживаемой технологии в BIOS Setup;
  2. установить в используемой ОС соответствующие драйверы (обычно это драйвер процессора);
  3. в Панели управления Windows (Control Panel), в разделе Электропитание (Power Management), на закладке Схемы управления питанием (Power Schemes) выбрать в списке схему Диспетчер энергосбережения (Minimal Power Management).

Например, для материнской платы Asus A8N-E с процессором нужно (подробные инструкции приведены в Руководстве пользователя):

  1. в BIOS Setup в разделе Advanced > CPU Configuration > AMD CPU Cool & Quiet Configuration параметр Cool N"Quiet переключить в Enabled; а в разделе Power параметр ACPI 2.0 Support переключить в Yes;
  2. установить ;
  3. см. выше.

Проверить, что частота процессора изменяется, можно при помощи любой программы, отображающей тактовую частоту процессора: от специализированных типа , вплоть до Панели управления Windows (Control Panel), раздел Система (System):


AMD Cool"n"Quiet в действии: текущая частота процессора (994 МГц) меньше номинальной (1,8 ГГц)

Часто производители материнских плат дополнительно комплектуют свои изделия наглядными программами, наглядно демонстрирующими работу механизма изменения частоты и напряжения процессора, например, Asus Cool&Quiet:

Частота процессора изменяется от максимальной (при наличии вычислительной нагрузки), до некоторой минимальной (при отсутствии загрузки ЦП).

Утилита RMClock

Во время разработки набора программ для комплексного тестирования процессоров , была создана (RightMark CPU Clock/Power Utility): она предназначена для наблюдения, настройки и управления энергосберегающими возможностями современных процессоров. Утилита поддерживает все современные процессоры и самые разные системы управления потреблением энергии (частотой, напряжением…) Программа позволяет наблюдать за возникновением троттлинга, за изменением частоты и напряжения питания процессора. Используя RMClock, можно настраивать и использовать всё, что позволяют стандартные средства: BIOS Setup, управление энергопотреблением со стороны ОС при помощи драйвера процессора. Но возможности этой утилиты гораздо шире: с её помощью можно настраивать целый ряд параметров, которые не доступны для настройки стандартным образом. Особенно это важно при использовании разогнанных систем, когда процессор работает быстрее штатной частоты.

Авторазгон видеокарты

Подобный метод используют и разработчики видеокарт: полная мощность графического процессора нужна только в 3D-режиме, а с рабочим столом в 2D-режиме современный графический чип справится и при пониженной частоте. Многие современные видеокарты настроены так, чтобы графический чип обслуживал рабочий стол (2D-режим) с пониженной частотой, энергопотреблением и тепловыделением; соответственно, вентилятор охлаждения крутится медленнее и шумит меньше. Видеокарта начинает работать на полную мощность только при запуске 3D-приложений, например, компьютерных игр. Аналогичную логику можно реализовать программно, при помощи различных утилит по тонкой настройке и разгону видеокарт. Для примера, так выглядят настройки автоматического разгона в программе для видеокарты HIS X800GTO IceQ II :

Тихий компьютер: миф или реальность?

С точки зрения пользователя, достаточно тихим будет считаться такой компьютер, шум которого не превышает окружающего шумового фона. Днём, с учётом шума улицы за окном, а также шума в офисе или на производстве, компьютеру позволительно шуметь чуть больше. Домашний компьютер, который планируется использовать круглосуточно, ночью должен вести себя потише. Как показала практика, практически любой современный мощный компьютер можно заставить работать достаточно тихо. Опишу несколько примеров из моей практики.

Пример 1: платформа Intel Pentium 4

В моём офисе используется 10 компьютеров Intel Pentium 4 3,0 ГГц со стандартными процессорными кулерами. Все машины собраны в недорогих корпусах Fortex ценой до $30, установлены блоки питания Chieftec 310-102 (310 Вт, 1 вентилятор 80?80?25 мм). В каждом из корпусов на задней стенке был установлен вентилятор 80?80?25 мм (3000 об/мин, шум 33 дБА) - они были заменены вентиляторами с такой же производительностью 120?120?25 мм (950 об/мин, шум 19 дБА). В файловом сервере локальной сети для дополнительного охлаждения жёстких дисков на передней стенке установлены 2 вентилятора 80?80?25 мм , подключённые последовательно (скорость 1500 об/мин, шум 20 дБА). В большинстве компьютеров использована материнская плата Asus P4P800 SE , которая способна регулировать обороты кулера процессора. В двух компьютерах установлены более дешёвые платы Asus P4P800-X , где обороты кулера не регулируются; чтобы снизить шум от этих машин, кулеры процессоров были заменены (1900 об/мин, шум 20 дБА).
Результат : компьютеры шумят тише, чем кондиционеры; их практически не слышно.

Пример 2: платформа Intel Core 2 Duo

Домашний компьютер на новом процессоре Intel Core 2 Duo E6400 (2,13 ГГц) со стандартным процессорным кулером был собран в недорогом корпусе aigo ценой $25, установлен блок питания Chieftec 360-102DF (360 Вт, 2 вентилятора 80×80×25 мм). В передней и задней стенках корпуса установлены 2 вентилятора 80×80×25 мм , подключённые последовательно (скорость регулируется, от 750 до 1500 об/мин, шум до 20 дБА). Использована материнская плата Asus P5B , которая способна регулировать обороты кулера процессора и вентиляторов корпуса. Установлена видеокарта с пассивной системой охлаждения.
Результат : компьютер шумит так, что днём его не слышно за обычным шумом в квартире (разговоры, шаги, улица за окном и т. п.).

Пример 3: платформа AMD Athlon 64

Мой домашний компьютер на процессоре AMD Athlon 64 3000+ (1,8 ГГц) собран в недорогом корпусе Delux ценой до $30, сначала содержал блок питания CoolerMaster RS-380 (380 Вт, 1 вентилятор 80?80?25 мм) и видеокарту GlacialTech SilentBlade GT80252BDL-1 , подключенными к +5 В (около 850 об/мин, шум меньше 17 дБА). Используется материнская плата Asus A8N-E , которая способна регулировать обороты кулера процессора (до 2800 об/мин, шум до 26 дБА, в режиме простоя кулер вращается около 1000 об/мин и шумит меньше 18 дБА). Проблема этой материнской платы: охлаждение микросхемы чипсета nVidia nForce 4, Asus устанавливает небольшой вентилятор 40?40?10 мм со скоростью вращения 5800 об/мин, который достаточно громко и неприятно свистит (кроме того, вентилятор оборудован подшипником скольжения, имеющим очень небольшой ресурс). Для охлаждения чипсета был установлен кулер для видеокарт с медным радиатором , на его фоне отчётливо слышны щелчки позиционирования головок жёсткого диска. Работающий компьютер не мешает спать в той же комнате, где он установлен.
Недавно видеокарта была заменена HIS X800GTO IceQ II , для установки которой потребовалось доработать радиатор чипсета : отогнуть рёбра таким образом, чтобы они не мешали установке видеокарты с большим вентилятором охлаждения. Пятнадцать минут работы плоскогубцами - и компьютер продолжает работать тихо даже с довольно мощной видеокартой.

Пример 4: платформа AMD Athlon 64 X2

Домашний компьютер на процессоре AMD Athlon 64 X2 3800+ (2,0 ГГц) с процессорным кулером (до 1900 об/мин, шум до 20 дБА) собран в корпусе 3R System R101 (в комплекте 2 вентилятора 120×120×25 мм, до 1500 об/мин, установлены на передней и задней стенках корпуса, подключены к штатной системе мониторинга и автоматического управления вентиляторами), установлен блок питания FSP Blue Storm 350 (350 Вт, 1 вентилятор 120×120×25 мм). Использована материнская плата (пассивное охлаждение микросхем чипсета), которая способна регулировать обороты кулера процессора. Использована видеокарта GeCube Radeon X800XT , система охлаждения заменена на Zalman VF900-Cu . Для компьютера был выбран жёсткий диск , известный низким уровнем создаваемого шума.
Результат : компьютер работает так тихо, что слышен шум электродвигателя жёстких дисков. Работающий компьютер не мешает спать в той же комнате, где он установлен (соседи за стенкой разговаривают и того громче).



Загрузка...