sonyps4.ru

Алгоритм шифрования des общая схема. Схема шифрования алгоритма DES

Сетевая технология – это согласованный набор стандартных протоколов и реализующих их программно-аппаратных средств, достаточных для построения вычислительной сети.

В проектировании локальных сетей основная роль отводится протоколам физического и канального уровней модели OSI. Специфика локальных сетей, в которых используется разделяемая среда передачи данных, нашла свое отражение в разделении канального уровня на два подуровня: логической передачи данных (Logical Link Control), уровень LLC, и управления доступом к сети (Media Access Control), уровень MAC.

Уровень MAC обеспечивает корректное использ общей среды передачи данных, когда по определенному алгоритму любой узел получает возможность передачи своего кадра данных. В современных вычислительных сетях имеют распространение несколько протоколов уровня MAC: Ethernet, Fast Ethernet, Gigabit Ethernet, l00VG-AniLAN, Token Ring, FDDI. Ур LLC организует передачу кадров данных с разл степенью надежности.

Технология Ethernet

Фирменный сетевой стандарт Ethernet был разработан фирмой Xerox в 1975 году. В 1980 году фирмы DEC, Intel, Xerox разработали стандарт Ethernet DIX на основе коаксиального кабеля. Эта последняя версия фирменного стандарта послужила основой стандарта IEEE 802.3. Стандарт IEEE 802.3 имеет модификации, которые различаются типом используемой физической среды:

Спецификации физической среды Ethernet

l0Base-5

l0Base-2

l0Base-T

l0Base-F

Максимальная длина сегмента

Макс. количество сегментов

Макс. количество пользователей

Максимальное число повторителей

Макс. протяженность

«толстый» коаксиал

"тонкий" коаксиал

Топология

звезда, дерево

    l0Base-T - Конечные узлы соединяются по топологии «точка-точка» с многопортовым повторителем с помощью двух витых пар. Преимущество l0Base-T: концентратор контролирует работу узлов и изолирует от сети некорректно работающие узлы.

    l0Base-F – «+» высокая помехоустойчивость,

«–» сложность прокладки оптики.

10 - скорость передачи данных, Base - метод передачи на одной базовой частоте 10 МГц, последний символ - тип кабеля. Локальные сети, построенные по этому стандарту, обеспечивают пропускную способность до 10 Мбит/с. Используемая топология - общая шина, "звезда" и смешанные структуры.

В стандарте 802.3, включая Fast Ethernet и Gigabit Ethernet, в качестве метода доступа к среде передачи данных используется метод коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-miltiply-access with collision detection, CSMA/CD), метод CSMA/CD.

Этот метод используется в сетях, где все компьютеры имеют непосредственный доступ к общей шине и могут немедленно получить данные, которые посылаются любым компьютером. Простота этого метода позволила ему получить широкое распространение.

Данные передаются кадрами. Каждый кадр снабжается преамбулой (8 байт), которая позволяет синхронизировать работу приемника и передатчика. В заголовках кадра указывается адрес узла-получателя, который позволяет узлу-получателю распознать, что предаваемый кадр предназначен ему, и адрес узла-отправителя для отправки сообщения, подтверждающего факт получения кадра. Минимальная длина кадра - 64 байта, максимальная - 1518 байт. Минимальная длина кадра является одним из параметров, определяющих диаметр сети или максимальную длину сегмента сети. Чем меньше кадр, тем меньше диаметр сети.

Передача кадра возможна, когда никакой другой узел сети не передает свой кадр. Стандарт Ethernet не позволяет одновременную передачу/прием более одного кадра. На практике в сетях Ethernet возможны ситуации, когда два узла пытаются передать свои кадры. В таких случаях происходит искажение передаваемых данных, потому что методы стандарта Ethernet не позволяет выделять сигналы одного узла из общего сигнала и возникает так называемая коллизия. Передающий узел, обнаруживший коллизию, прекращает передачу кадра, делает паузу случайной длины и повторяет попытку захвата передающей среды и передачи кадра. После 16 попыток передачи кадра кадр отбрасывается.

При увеличении количества коллизий, когда передающая среда заполняется повторными кадрами, реальная пропускная способность сети резко уменьшается. В этом случае необходимо уменьшить трафик сети любыми доступными методами (уменьшение количества узлов сети, использование приложений с меньшими затратами сетевых ресурсов, реструктуризация сети).

Технология Fast Ethernet

Развитие локальных сетей, появление новых более быстрых компьютеров привело к необходимости совершенствования стандарта Ethernet с целью увеличения пропускной способности сети до 100 Мбит/с.

Технология Fast Ethernet использует метод доступа CSMA/CD, такой же, как в технологии Ethernet, что обеспечивает согласованность технологий. Отличия Fast Ethernet от Ethernet наблюдаются только на физическом уровне. На канальном уровне изменений нет.

    8В/6Т - каждые 8 бит информации уровня MAC кодируются 6-ю троичными цифрами (3 состояния), группа из 6-ти троичных цифр передается на одну из 3 передающих витых пар, независимо и последовательно, 4 пара используется для прослушивания несущей частоты в целях обнаружения коллизии;

    4В/5В: каждые 4 бита данных подуровня MAC представляются 5 битами.

Диаметр сети сократился до 200 метров, что связано с увеличением скорости передачи данных в 10 раз. Стандарты ТХ и FX могут работать как в полудуплексном режиме (передача ведется в двух направлениях, но попеременно во времени), так и в полнодуплексном режиме (передача ведется одновременно в двух направлениях) за счет использования двух витых пар или двух оптических волокон. Для отделения кадра Ethernet от символов Idle в спецификациях 100Base-FX/ТХ используется комбинация символов Start Delimiter (пара символов J (11000) и К (10001) кода 4В/5В, а после завершения кадра перед первым символом Idle вставляется символ Т).

Для всех трех стандартов справедливы следующие утверждения и характеристики.

    Межкадровый интервал (IPG) равен 0,96 мкс, изменения в MAC не вносились;

    Признаком свободного состояния среды является передача по ней символа Idle соответствующего избыточного кода;

Спецификация Fast Ethernet включает также механизм автосогласования, позволяющий порту узла автоматически настраиваться на скорость передачи данных - 10 или 100 Мбит/с. Этот механизм основан на обмене рядом пакетов с портом концентратора.

Технология Gigabit Ethernet

Стандарт IEEE 802.3z Gigabit Ethernet был принят в 1998 году на основе согласованных усилий группы компаний, образовавших объединение Gigabit Ethernet Alliance. В качестве варианта физического уровня был принят физический уровень технологии Fiber Channel. Разработчики стандарта максимально сохранили преемственность предыдущих стандартов Ethernet: сохраняются все форматы кадров, полудуплексная и полнодуплексная версии протоколов, поддерживаются коаксиальный кабель, витая пара категории 5, волоконно-оптический кабель.

Поддержка полудуплексного режима метода доступа CSMA/CD сокращает диаметр сети до 25 м. Для увеличения диаметра сети до 200 м разработчики изменили размер минимального кадра с 64 до 512 байт. Для сокращения накладных расходов по передаче длинных кадров стандарт разрешает передавать несколько кадров подряд, не дополняя их до 512 байт и не передавая доступ к среде другому узлу. Не поддерживает:

    качество обслуживания;

    избыточные связи;

    тестирование работоспособности узлов и оборудования.

т.к. с этими задачами хорошо справляются протоколы более высоких уровней. Метод доступа CSMA/CD.

Спецификации

Максимальная длина сегмента

Кодирование

многомодовая оптика

одномодовая оптика

многомодовая оптика

Топология

звезда, дерево

звезда, дерево

звезда, дерево

звезда, дерево

звезда, дерево

Многомодовый кабель – применяются излучатели, работающие на двух длинах волн: 1300 и 850 нм. Светодиоды с λ=850 нм – дешевле, чем с λ=1300 нм. Длина кабеля уменьшается – затухание на волне 850 м более чем в два раза выше, чем на волне 1300 нм.

Одномодовый кабель – применяются излучатели, работающие на длине волны: 1300.

Увеличение минимального размера кадра с 64 до 512 байт. Разрешается также передавать несколько кадров подряд, не освобождая среду.

Технология Token Ring

Сеть Token Ring так же, как и Ethernet, предполагает использование разделяемой среды передачи данных, которая образуется объединением всех узлов в кольцо. Token Ring - стандарт локальных сетей, использующий разделяемую среду передачи данных, состоящую из отрезков кабеля, соединяющих все станции сети в кольцо.

Сети Token Ring работают с двумя битовыми скоростями - 4 и 16 Мбит/с.

Посланный кадр всегда возвращ в станцию - отправитель. Для контроля сети 1 из станций – актив монитор.

Маркерный метод доступа к разделяемой среде

Право на доступ к среде передается циклически от станции к станции в одну сторону по логическому кольцу с помощью кадра специального формата - маркера или токена (token).

Получив маркер, станция, имеющая данные для передачи, изымает его из кольца, добавляет свои данные и передает следующей станции. Кадр снабжен адресом назначения и адресом источника. Если кадр проходит через станцию назначения, то она копирует кадр в свой внутренний буфер и вставляет в кадр признак подтверждения приема. Станция-отправитель при обратном получении кадра с подтверждением приема изымает этот кадр из кольца и передает маркер другим станциям. Такой алгоритм применяется в сетях Token Ring со скоростью 4 Мбит/с.

Время удержания маркера (token holding time, 10 мс) – после его истечения станция обязана прекратить передачу собственных данных и передать маркер далее по кольцу. Станция может успеть передать за время удержания маркера один или несколько кадров.

В сетях Token Ring 16 Мбит/с используется алгоритм раннего освобождения маркера (Early Token Release). Станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. По кольцу одновременно продвигаются кадры нескольких станций, пропускная способность используется эффективнее. Свои кадры в каждый момент времени может генерировать только одна станция - владеющая маркером доступа.

Передающая станция может назначать кадрам различные приоритеты: от 0 до 7. Станция имеет право захватить переданный ей маркер только в том случае, если приоритет кадра, который она хочет передать, выше (или равен) приоритета маркера.

За наличие в сети маркера отвечает активный монитор. Если он не получает маркер в течение длительного времени (например, 2,6 с), то он порождает новый маркер.

кадр данных - состоит из следующих полей:

На практике хосты не обязательно соединяются по кругу, более того, конфигурация их соединения может иметь обычную топологию "звезда". Станции в кольцо объединяют с помощью концентраторов, выход предыдущей станции в кольце соединяется со входом последующей.

Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующими кадры по принципу «от источника», для чего в кадр Token Ring добавляется специальное поле с маршрутом прохождения колец.

Token Ring более сложная технология, чем Ethernet. Обладает свойствами отказоустойчивости.

Token Ring использует до 75 % полосы пропускания, теоретический максимум использования у Ethernet составляет около 37 %.

Организация локальных сетей Token Ring стоит дороже из-за технологической сложности механизма эстафетной передачи маркера и использования сетевых карт, которые передают пакеты в упорядоченном режиме.

Стандарт Token Ring поддерживает экранированную и неэкранированную витую пару, оптоволоконный кабель. Максимальная длина кольца 4000 м. Максимальное количество узлов 260. Компания IBM предложила новую технологию High-Speed Token Ring, которая поддерживает скорости 100 и 155 Мбит/с и сохраняет основные особенности технологии Token Ring.

Технология FDDI

Технология FDDI (Fiber Distributed Data Interface) разрабатывается институтом ANSI, начиная с 80-х годов. В этой технологии в качестве физической среды передачи данных впервые предлагается оптоволоконный кабель. Имеется возможность использования неэкранированной витой пары.

Сеть FDDI состоит из двух колец для повышения отказоустойчивости. Данные передаются по первичному кольцу сети в одном направлении, по вторичному кольцу - в противоположном. В обычном режиме используется только первичное кольцо. В случае отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), происходит процесс сворачивания колец, при котором первичное кольцо объединяется с вторичным, образуя новое кольцо. При множественных отказах сеть распадается на несколько колец. В стандарте FDDI предусмотрено одновременное подключение узлов к первичному и вторичному кольцам и подключение только к первичному кольцу. Первое называется двойным подключением, а второе - одиночным. При обрыве узла с двойным подключением происходит автоматическое сворачивание колец. Сеть продолжает нормально функционировать. При обрыве узла с одиночным подключением сеть продолжает работать, но узел будет отрезан от сети.

Кольца сети FDDI являются разделяемой средой передачи данных, для доступа к которой применяется маркерный метод, аналогичный используемому в сетях Token Ring. Различия в некоторых деталях. Время удержания маркера является переменной величиной и зависит от степени загрузки сети. При небольшой загрузке сети время удержания маркера больше, при большой загрузке - уменьшается. Сеть FDDI поддерживает скорость 100 Мбит/с. Диаметр сети - 100 км. Макс количество узлов - 500. Однако стоимость реализации данной технологии значительна, поэтому область применения стандарта FDDI - магистрали сетей и крупные сети.

Все компьютеры в локальной сети соединены линиями связи. Геометрическое расположение линий связи относительно узлов сети и физическое подключение узлов к сети называется физической топологией. В зависимости от топологии различают сети: шинной, кольцевой, звездной, иерархической и произвольной структуры.

Различают физическую и логическую топологию. Логическая и физическая топологии сети независимы друг от друга. Физическая топология - это геометрия построения сети, а логическая топология определяет направления потоков данных между узлами сети и способы передачи данных.

В настоящее время в локальных сетях используются следующие физические топологии:

    физическая "шина" (bus);

    физическая “звезда” (star);

    физическое “кольцо” (ring);

    физическая "звезда" и логическое "кольцо" (Token Ring).

Полносвязная топология, Ячеистая топология, Общая шина, звезда, кольцо, смешанная

Шинная:

Данная топология применяется в локальных сетях с архитектурой Ethernet (классы 10Base-5 и 10Base-2 для толстого и тонкого коаксиального кабеля соответственно).

Преимущества сетей шинной топологии:

отказ 1 из узлов не влияет на работу сети в целом;

сеть легко настраивать и конфигурировать;

сеть устойчива к неисправностям отдельных узлов.

Недостатки сетей шинной топологии:

разрыв кабеля может повлиять на работу всей сети;

огранич длина кабеля и кол-во рабочих станций;

трудно определить дефекты соединений

Звезда:

Данные от передающей станции сети передаются через хаб по всем линиям связи всем ПК. Информация поступает на все рабочие станции, но принимается только теми станциями, которым она предназначается. Так как передача сигналов в топологии физ звезда является широковещательной, т.е. сигналы от ПК распространяются одновременно во все направления, то логич топология данной лок сети является логической шиной.

Данная топология применяется в локальных сетях с архитектурой 10Base-T Ethernet.

Преимущества сетей топологии звезда:

легко подключить новый ПК;

имеется возможность централизованного управления;

сеть устойчива к неисправностям отдельных ПК и к разрывам соединения отдельных ПК.

Недостатки сетей топологии звезда:

отказ хаба влияет на работу всей сети;

большой расход кабеля;

Кольцо

Принимающая рабочая станция распознает и получает только адресованное ей сообщение. В сети с топологией типа физическое кольцо используется маркерный доступ, который предоставляет станции право на использование кольца в определенном порядке. Логическая топология данной сети - логическое кольцо.

Данную сеть очень легко создавать и настраивать. К основному недостатку сетей топологии кольцо является то, что повреждение линии связи в одном месте или отказ ПК приводит к неработоспособности всей сети.

Как правило, в чистом виде топология “кольцо” не применяется из-за своей ненадёжности, поэтому на практике применяются различные модификации кольцевой топологии.

Сеть FDDI (от английского Fiber Distributed Data Interface, оптоволоконный распределенный интерфейс данных) – стандарт локальных сетей, развивающий идею Token Ring. Стандарт FDDI был предложен Американским национальным институтом стандартов ANSI (спецификация ANSI X3T9.5). Затем был принят стандарт ISO 9314, соответствующий спецификациям ANSI.

В отличие от других стандартных локальных сетей, стандарт FDDI изначально ориентировался на высокую скорость передачи (100 Мбит/с) и на применение оптоволоконного кабеля.

Выбор оптоволокна в качестве среды передачи определил такие преимущества новой сети, как высокая помехозащищенность, максимальная секретность передачи информации и прекрасная гальваническая развязка абонентов. Высокая скорость передачи, которая в случае оптоволоконного кабеля достигается гораздо проще, позволяет решать многие задачи, недоступные менее скоростным сетям, например, передачу изображений в реальном масштабе времени. Кроме того, оптоволоконный кабель легко решает проблему передачи данных на расстояние нескольких километров без ретрансляции, что позволяет строить большие по размерам сети, охватывающие даже целые города и имеющие при этом все преимущества локальных сетей (в частности, низкий уровень ошибок).

За основу стандарта FDDI был взят метод маркерного доступа, предусмотренный международным стандартом IEEE 802.5 (Token-Ring). Несущественные отличия от этого стандарта определяются необходимостью обеспечить высокую скорость передачи информации на большие расстояния. Топология сети FDDI – это кольцо, наиболее подходящая топология для оптоволоконного кабеля. В сети применяется два разнонаправленных оптоволоконных кабеля, один из которых обычно находится в резерве, однако такое решение позволяет использовать и полнодуплексную передачу информации (одновременно в двух направлениях) с удвоенной эффективной скоростью в 200 Мбит/с (при этом каждый из двух каналов работает на скорости 100 Мбит/с).

Применяется и звездно-кольцевая топология с концентраторами, включенными в кольцо (как в Token-Ring).

Основные технические характеристики сети FDDI.

  • Максимальное количество абонентов сети – 1000.
  • Максимальная протяженность кольца сети – 20 километров.
  • Максимальное расстояние между абонентами сети – 2 километра.
  • Среда передачи – многомодовый оптоволоконный кабель (возможно применение витой пары).
  • Метод доступа – маркерный.
  • Скорость передачи информации – 100 Мбит/с (200 Мбит/с для дуплексного режима передачи).

Ограничение на общую длину сети в 20 км связано не с затуханием сигналов в кабеле, а с необходимостью ограничения времени полного прохождения сигнала по кольцу для обеспечения предельно допустимого времени доступа. А вот максимальное расстояние между абонентами (2 км при многомодовом кабеле) определяется как раз затуханием сигналов в кабеле (оно не должно превышать 11 дБ). Предусмотрена также возможность применения одномодового кабеля, и в этом случае расстояние между абонентами может достигать 45 километров, а полная длина кольца – 200 километров.

Имеется также реализация FDDI на электрическом кабеле (CDDI – Copper Distributed Data Interface или TPDDI – Twisted Pair Distributed Data Interface). При этом используется кабель категории 5 с разъемами RJ-45. Максимальное расстояние между абонентами в этом случае должно быть не более 100 метров. Стоимость оборудования сети на электрическом кабеле в несколько раз меньше. Но эта версия сети уже не имеет столь очевидных преимуществ перед конкурентами, как изначальная оптоволоконная FDDI. Электрические версии FDDI стандартизованы гораздо хуже оптоволоконных, поэтому совместимость оборудования разных производителей не гарантируется.

Стандарт FDDI для достижения высокой гибкости сети предусматривает включение в кольцо абонентов двух типов:

  • Абоненты (станции) класса А (абоненты двойного подключения, DAS – Dual-Attachment Stations) подключаются к обоим (внутреннему и внешнему) кольцам сети. При этом реализуется возможность обмена со скоростью до 200 Мбит/с или резервирования кабеля сети (при повреждении основного кабеля используется резервный). Аппаратура этого класса применяется в самых критичных с точки зрения быстродействия частях сети.
  • Абоненты (станции) класса В (абоненты одинарного подключения, SAS – Single-Attachment Stations) подключаются только к одному (внешнему) кольцу сети. Они более простые и дешевые, по сравнению с адаптерами класса А, но не имеют их возможностей. В сеть они могут включаться только через концентратор или обходной коммутатор, отключающий их в случае аварии.

Кроме собственно абонентов (компьютеров, терминалов и т.д.) в сети используются связные концентраторы (Wiring Concentrators), включение которых позволяет собрать в одно место все точки подключения с целью контроля работы сети, диагностики неисправностей и упрощения реконфигурации. При применении кабелей разных типов (например, оптоволоконного кабеля и витой пары)

концентратор выполняет также функцию преобразования электрических сигналов в оптические и наоборот. Концентраторы также бывают двойного подключения (DAC – Dual-Attachment Concentrator) и одинарного подключения (SAC – Single-Attachment Concentrator).

Стандарт FDDI предусматривает также возможность реконфигурации сети с целью сохранения ее работоспособности в случае повреждения кабеля. Поврежденный участок кабеля исключается из кольца, но целостность сети при этом не нарушается вследствие перехода на одно кольцо вместо двух (то есть абоненты DAS начинают работать, как абоненты SAS). Это равносильно процедуре сворачивания кольца в сети Token-Ring.

В отличие от метода доступа, предлагаемого стандартом IEEE 802.5, в FDDI применяется так называемая множественная передача маркера. Если в случае сети Token-Ring новый (свободный) маркер передается абонентом только после возвращения к нему его пакета, то в FDDI новый маркер передается абонентом сразу же после окончания передачи им пакета. Последовательность действий здесь следующая:

  1. Абонент, желающий передавать, ждет маркера, который идет за каждым пакетом.
  2. Когда маркер пришел, абонент удаляет его из сети и передает свой пакет. Таким образом, в сети может быть одновременно несколько пакетов, но только один маркер.
  3. Сразу после передачи своего пакета абонент посылает новый маркер.
  4. Абонент-получатель, которому адресован пакет, копирует его из сети и, сделав пометку в поле статуса пакета, отправляет его дальше по кольцу.
  5. Получив обратно по кольцу свой пакет, абонент уничтожает его. В поле статуса пакета он имеет информацию о том, были ли ошибки, и получил ли пакет приемник.

В сети FDDI не используется система приоритетов и резервирования, как в Token-Ring. Но предусмотрен механизм адаптивного планирования нагрузки, что позволяет абонентам гибко реагировать на загрузку сети и автоматически поддерживать ее на оптимальном уровне.

В заключение следует отметить, что несмотря на очевидные преимущества FDDI данная сеть не получила широкого распространения, что связано главным образом с высокой стоимостью ее аппаратуры (порядка нескольких сот и даже тысяч долларов). Основная область применения FDDI сейчас – это базовые, опорные (Backbone) сети, объединяющие несколько сетей. Применяется FDDI также для соединения мощных рабочих станций или серверов, требующих высокоскоростного обмена.

В настоящее время сети Fast Ethernet и Gigabit Ethernet почти полностью вытеснили FDDI, несмотря на все преимущества данной технологии.



Загрузка...